
1

Errors in Calculations of Wet-bulb Temperature

Rob Warren and Cass Rogers, Bureau of Meteorology, Melbourne, Australia

19 October 2023

We have identified a set of three bugs in two open-source codes for calculating adiabatic wet-bulb

temperature, 𝑇w, using the method of Davies-Jones (2008) (hereafter DJ08). The first code is a

MATLAB script written by Bob Kopp. This was ported from the implementation of DJ08 in Jonathan

Buzan's HumanIndexMod Fortran 90 code back in 2016. The second code is a Python script by Xian-

Xiang Li, which was itself ported from the MATLAB code in 2019. Other implementations of the DJ08

method containing the bugs may exist of which we are unaware.

The first bug was likely introduced when the code was ported to MATLAB and vectorized. In defining

the initial estimate for 𝑇w, the "cold" index array is set in the MATLAB code (on L157) as:

 cold = ((X>=1).*(X<=D));

Here 𝑋 = (𝐶/𝑇e)𝜆, where 𝑇e is the equivalent temperature, 𝐶 = 273.15 K, and 𝜆 = 3.504. The same

definition is used in the Python code (L307). With this definition, the adjustment of –1.21 to the

coefficients 𝑘1 and 𝑘2 is applied where 1 ≤ 𝑋 ≤ 𝐷, when it should be applied for 𝑋 < 1 (see Eq. 4.8–

4.11 from DJ08). In HumanIndexMod, the condition is correctly specified (on L486–490) as:

 if ((X >= 1.) .AND. (X <= D)) then

 cold = 0.

 else

 cold = 1.

 endif

The second bug is in the "Q_sat2" function, where ∂𝑓/ ∂𝑇w is calculated. In the MATLAB code, the

derivative is specified (L326) as:

 fdT = -lambd_a.*(1./T_k + vkp.*de_mbdT./pminuse + gdT);

The same equation is used in the Python code (L188). However, this is the equation for 𝜕(ln 𝑓)/𝜕𝑇

(Eq. A2 from DJ08). To get ∂𝑓/ ∂𝑇w, 𝜕(ln 𝑓)/𝜕𝑇w must be multiplied by 𝑓 (Eq. A1 from DJ08). This

bug was present in the original HumanIndexMod code (and appears in Eq. A20 in Buzan et al. 2015)

but was identified by Qinqin Kong and fixed by Jonathan Buzan in late 2020 (see edits on L937–944).

The third "bug" is arguably more of an approximation than a bug per se; however, it turns out to be the

most significant in terms of impact on solution accuracy (see below). The MATLAB code defines the

initial humidity variables as follows (L83–93):

 if HumidityMode==0

 qin=Humidity; % specific humidity

 relhum = 100*qin./rs; % relative humidity (%)

 vapemb = es_mb .* relhum * 0.01; % vapor pressure (mb)

 elseif HumidityMode==1

 relhum=Humidity; % relative humidity (%)

 qin = rs .* relhum * 0.01; % specific humidity

 vapemb = es_mb .* relhum * 0.01; % vapor pressure (mb)

 end

 mixr = qin * grms; % change specific humidity to mixing ratio (g/kg)

where HumidityMode=0 if the input moisture variable is specific humidity, 𝑞, in kg/kg, and

HumidityMode=1 if the input moisture variable is relative humidity, RH, in %. The same definitions

are used in the Python code (L231–243). There are two errors in these equations:

1. Specific humidity and mixing ratio, 𝑟, are assumed to be equivalent (but with the former in

kg/kg and the latter in g/kg) when, in fact, 𝑟 = 𝑞/(1 − 𝑞).

https://github.com/bobkopp/WetBulb.m
https://github.com/jrbuzan/HumanIndexMod_2020/blob/main/HumanIndexMod.F90
https://github.com/smartlixx/WetBulb/

2

2. Relative humidity is assumed to be related to the mixing ratio and saturation mixing ratio, 𝑟s,

by RH = 𝑟/𝑟s. In fact, RH = 𝑒/𝑒s, where 𝑒 is the vapour pressure and 𝑒s is the saturation

vapour pressure. Vapour pressure and mixing ratio are related by 𝑟 = 𝜀𝑒/(𝑝 − 𝑒), where 𝜀 =

𝑅d/𝑅v is the ratio of the specific gas constants for dry air and water vapour, while vapour

pressure and specific humidity are related by 𝑞 = 𝑟/(1 + 𝑟) = 𝜀𝑒/[𝑝 − (1 − 𝜀)𝑒].

The second approximation is also present in HumanIndexMod (L452); however, in this case it

represents a deliberate design choice (J. Buzan, personal communication). That code was built to be

used with the Community Land Model (Buzan et al. 2015), which defines the relative humidity at 2 m

using mixing ratios rather than vapour pressures. In this context, it is accurate to calculate the mixing

ratio as 𝑟 = 𝑟s × RH. However, for applications where relative humidity is defined in the standard way

(i.e., RH = 𝑒/𝑒s), mixing ratio should instead be calculated as 𝑟 = 𝜀𝑒/(𝑝 − 𝑒), where 𝑒 = 𝑒s × RH.

The figures below show the impact of the bugs individually and combined on errors in 𝑇w relative to a

correct implementation of DJ08. Values were calculated at a pressure of 1000 hPa and are plotted as

a function of temperature and relative humidity. Errors for Bugs 1 and 2 are insensitive to the choice

of input humidity variable so are only shown for HumidityMode=0 (Figure 1). On the other hand,

errors for Bug 3, and hence the combination of all three bugs, differ substantially between the two

HumidityMode settings so are plotted for both (Figure 2).

Figure 1. Errors in 𝑇w caused by (a) Bug 1, (b) Bug 2, and (c) Bugs 1 and 2 combined, plotted as a function of

temperature, 𝑇, and relative humidity, RH. Values are calculated at a pressure of 1000 hPa. Contours show 𝑇w (in

°C) from a corrected implementation of DJ08.

Figure 2. As in Figure 1 but showing errors caused by (a, c) Bug 3 and (b, d) all three bugs combined with (a, b)

specific humidity, 𝑞, as the input moisture variable (HumidityMode=0) and (b, d) relative humidity, RH, as the

input moisture variable (HumidityMode=1).

3

In isolation, Bug 1 has little impact on solution accuracy, while Bug 2 only has a substantial impact at

extreme values of 𝑇w (> 45°C). When combined, however, the two bugs result in non-negligible errors

for 𝑇w > 27°C, which increase nonlinearly with increasing 𝑇w. These errors can be mitigated via

additional iterations (not shown), indicating that the bugs slow down convergence of the solution. This

motivated the addition of the ConvergenceMode option in HumanIndexMod (L502–529), which is

replicated in the MATLAB (L190–219) and Python (L342–375) codes. With ConvergenceMode on,

the errors associated with Bugs 1 and 2 are eliminated. However, in the absence of these bugs, the

solution converges to within 0.001°C after just four iterations, even at very high 𝑇w, rendering the

ConvergenceMode option obsolete. Turning to Bug 3, for HumdityMode=0 we see an

underestimation of 𝑇w at the highest 𝑇 and RH values. Conversely, for HumidityMode=1 errors are

positive, with maximum magnitudes at high 𝑇 and moderate RH. Interestingly, for HumidityMode=0

the combination of all three bugs leads to a cancellation of errors at all but the most extreme 𝑇w

values. Conversely, for HumidityMode=1, the errors compound, resulting in a large positive bias at

high 𝑇 across almost the full range of RH.

It is worth noting that, in the absence of any bugs, the DJ08 method is very accurate. Figure 3

compares errors in 𝑇w (again at a pressure of 1000 hPa) for the Stull (2011) method, the

wet_bulb_temperature function from MetPy (May et al. 2022), a correct implementation of DJ08, and

a new method that we have developed called NEWT (Noniterative Evaluation of Wet-bulb

Temperature). Each method is compared against an "exact" iterative solution1 that follows the

diagrammatic approach to calculating adiabatic wet-bulb temperature (i.e., lifting a parcel dry

adiabatically to saturation and then descending back to the original pressure along a pseudoadiabat).

The Stull and MetPy methods show large positive and negative errors, respectively, at high 𝑇 and low

to moderate RH. The Stull method in particular suffers from very large errors in this region, with

magnitudes up to 1.3°C. Maximum error magnitudes for the MetPy function are smaller but not

insignificant (around 0.4°C). Conversely, maximum error magnitudes for DJ08 and NEWT are only

around 0.05°C and 0.01°C, respectively. Note that at this level of precision, choices such as the

equation for saturation vapour pressure (SVP) and the values of the heat capacities become

significant. The DJ08 method uses the Magnus equation for SVP from Bolton (1980), whereas NEWT

uses the analytical equation from Ambaum (2020). The latter is more accurate, particularly for

temperatures above 40°C (see Fig. 2 from Ambaum 2020). Ultimately, however, both the DJ08 and

NEWT methods are sufficiently accurate for use in studies of humid heat extremes. On the other

hand, large biases in the Stull method make it unsuitable for studying these extremes.

Figure 3. Errors in 𝑇w, relative to an "exact" diagrammatic solution, for calculations using the (a) Stull, (b) MetPy,

(c) DJ08, and (d) NEWT methods. Values are calculated at a pressure of 1000 hPa and plotted as a function of

temperature, 𝑇, and relative humidity, RH. Contours show 𝑇w (in °C) from the diagrammatic solution. Results for

the Stull method are masked where the method is considered invalid. Note the different colour scale for each panel.

1 We say "exact" because even this approach uses the so-called Rankine–Kirchhoff approximations of ideal gases, constant
specific heats, and zero specific volume of condensates (Romps 2021).

https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.wet_bulb_temperature.html
https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.wet_bulb_temperature.html

4

We note that Bug 3 has also made its way into Dawei Li's Python code for calculating the so-called

isobaric wet-bulb temperature. In this code, specific humidity, 𝑞, saturation specific humidity, 𝑞s, and

relative humidity, RH, are assumed to be related by RH = 𝑞/𝑞s and 𝑞s is assumed to be equal to the

saturation mixing ratio, 𝑟s. Instead, as previously noted, relative humidity is given by RH = 𝑒/𝑒𝑠 and

saturation specific humidity by 𝑞s = 𝑟s/(1 + 𝑟s) = 𝜀𝑒s/[𝑝 − (1 − 𝜀)𝑒s]. The code also contains a minor

error in Bolton's formula for 𝑒s, with 243.15 instead of 243.5 on the denominator.

The errors in isobaric 𝑇w due to Bug 3, shown below in Figure 4, are very similar to those for the DJ08

method; namely, an overestimation of 𝑇w at high 𝑇 and moderate RH when using relative humidity as

the input moisture variable (h_type='r') and an underestimation of 𝑇w at high 𝑇 and high RH when

using specific humidity (h_type='s'). On the other hand, when using dewpoint temperature as the

input moisture variable (h_type='d'), there appears to be some cancellation of errors, resulting in

only a small underestimation of 𝑇w at high 𝑇 and low to moderate RH.

Figure 4. Errors in isobaric 𝑇w caused by Bug 3 for calculations using (a) relative humidity (h_type='r'), (b)

specific humidity (h_type='s'), and (c) dewpoint temperature (h_type='d') as the input moisture variable.

Values are calculated at a pressure of 1000 hPa and plotted as a function of temperature, 𝑇, and relative humidity,

RH. Contours show isobaric 𝑇w (in °C) calculated without Bug 3.

It is important to note that the isobaric wet-bulb temperature is different from the adiabatic wet-bulb

temperature. The former is the temperature of a parcel of air cooled isobarically to saturation via

evaporation of water into it, while the latter is the temperature of a parcel of air lifted adiabatically to

saturation and then brought adiabatically at saturation back to its starting pressure. According to the

AMS Glossary the adiabatic wet-bulb temperature is "always less than the isobaric wet-bulb

temperature, usually by a fraction of a degree centigrade". To avoid confusion, in the following

discussion and in Figure 5 we use 𝑇wi for isobaric wet-bulb temperature and 𝑇wa for adiabatic wet-bulb

temperature. It should be emphasized that the Stull, DJ08, MetPy, and NEWT methods, together with

our "exact" diagrammatic method, all provide estimates of 𝑇wa rather than 𝑇wi.

Figure 5a compares 𝑇wi, computed using a corrected version of Dawei Li's code, against 𝑇wa,

computed using the "exact" diagrammatic method. While 𝑇wi exceeds 𝑇wa across most of the phase

space, the sign of the difference is reversed at higher temperatures and humidities, which is

inconsistent with the AMS Glossary definition above. This results from inaccuracies in the method

used to calculate 𝑇wi. In particular, the method (as described in the supplementary material to Li et al.

2020) neglects the temperature dependence of the latent heat of vaporisation, 𝐿v. It also neglects the

contribution of moisture to the isobaric specific heat capacity, 𝑐𝑝, although this is a less severe

approximation than constant 𝐿v. A more accurate equation for 𝑇wi can be derived without these

approximations and solved using Newton's method (see Appendix). Figure 5b and c compare the

resulting 𝑇wi values against 𝑇wa and the approximate 𝑇wi, respectively. We see that the assumptions

of constant 𝐿v and 𝑐𝑝 lead to an underestimation of 𝑇wi for temperatures above freezing (Figure 5c).

https://github.com/dw-li/WBGT
https://glossary.ametsoc.org/wiki/Wet-bulb_temperature

5

The magnitude of this error increases with increasing 𝑇 and decreasing RH, reaching a maximum of

~0.4°C. With our more accurate equation, 𝑇wi exceeds 𝑇wa across the entire phase space, consistent

with the definition in the AMS Glossary (Figure 5b). Differences exceed 1°C for high 𝑇 and very low

RH but are smaller at higher humidities where the most extreme wet-bulb temperatures occur. This

indicates that the choice of adiabatic versus isobaric wet-bulb temperature is not overly relevant in

studies of humid heat extremes.

Figure 5. (a) Difference between isobaric wet-bulb temperature, 𝑇wi, computed using the original approximate

method (without Bug 3), and adiabatic wet-bulb temperature, 𝑇wa, from an "exact" diagrammatic solution. (b) As in

(a) but for 𝑇wi calculated using our new more accurate method. (c) Difference in 𝑇wi calculated using the original

approximate method and the new more accurate method. Values are calculated at a pressure of 1000 hPa and

plotted as a function of temperature, 𝑇, and relative humidity, RH. Contours show 𝑇wi (in °C) from our more accurate

method. Note the different colour scale for (c).

Summary and Recommendations

We have identified a set of three bugs in two open-source implementations of the DJ08 method for

calculating adiabatic wet-bulb temperature. Combined, the first two bugs lead to an overestimation of

high 𝑇w values, which can be mitigated through additional iterations (using ConvergenceMode on).

Without these bugs, the solution converges to within 0.001°C after just four iterations (rendering the

ConvergenceMode option obsolete). The impact of the third bug depends on the choice of input

moisture variable, with negative errors when using specific humidity (HumidityMode=0) and positive

errors when using relative humidity (HumidityMode=1). This bug has also found its way into an

open-source code for calculating the isobaric wet-bulb temperature. Additional errors in the latter code

result from the assumption of constant 𝐿v and constant 𝑐𝑝. A more accurate equation for isobaric wet-

bulb temperature has been derived without these assumptions (see Appendix). In addition, we have

developed a new, fast method for calculating adiabatic wet-bulb temperature called NEWT

(Noniterative Evaluation of Wet-bulb Temperature), which is even more accurate than DJ08. This

method will be presented in a future publication.

Based on these results we offer the following recommendations:

• For calculating adiabatic wet-bulb temperature, we recommend using either a corrected

implementation of DJ08 or NEWT. We strongly advise against the use of the Stull method due

to its severe overestimation of 𝑇w at high temperatures and low to moderate humidities.

• For calculating isobaric wet-bulb temperature, we recommend using the iterative method

detailed in the Appendix.

Note that while the adiabatic and isobaric wet-bulb temperature differ substantially at very low relative

humidities, the two are within a fraction of a degree Celsius at higher humidities where the most

extreme wet-bulb temperatures occur.

6

Colin Raymond has put together a corrected and Numba-accelerated Python implementation of DJ08.

He has also written a blog post in which he discusses the bugs and analyses their impact on the

results of his 2020 paper (Raymond et al. 2020). A Python library that includes NEWT and our more

accurate method for calculating isobaric wet-bulb temperature will be made available later this year.

Readers who have been using the DJ08 method in their work are encouraged to check their codes

and correct the bugs if present. We would also recommend revisiting published results that were

based on one of the erroneous codes to assess the impact of the bugs on key conclusions.

If you have any questions or comments regarding our analysis please reach out to us via email at

rob.warren1@bom.gov.au and cassandra.rogers@bom.gov.au.

Acknowledgements

Thanks to Jonathan Buzan for providing information on the design of HumanIndexMod and Colin

Raymond for useful discussions regarding the various implementations of the DJ08 method.

References

Ambaum, M. H. P., 2020: Accurate, simple equation for saturated vapour pressure over water and ice.

Q. J. Roy. Meteor. Soc., 146, 4252–4258, https://doi.org/10.1002/qj.3899.

Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 1046–

1053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

Buzan, J. R., K. Oleson, and M. Huber, 2015: Implementation and comparison of a suite of heat

stress metrics within the Community Land Model version 4.5. Geosci. Model Dev., 8, 151–170,

https://doi.org/10.5194/gmd-8-151-2015.

Davies-Jones, R., 2008: An efficient and accurate method for computing the wet-bulb temperature

along pseudoadiabats, Mon. Wea. Rev., 136, 2764–2785, https://doi.org/10.1175/2007MWR2224.1.

Li, D., J. Yuan, and R. E. Kopp, 2020: Escalating global exposure to compound heat-humidity

extremes with warming. Environ. Res. Lett., 15, 064003. https://doi.org/10.1088/1748-9326/ab7d04.

May, R. M., K. H. Goebbert, J. E. Thielen, J. R. Leeman, M. D. Camron, Z. Bruick, E. C. Bruning, R. P.

Manser, S. C. Arms, and P. T. Marsh, 2022: MetPy: A meteorological Python library for data analysis

and visualization. Bull. Amer. Meteor. Soc., 103, E2273–E2284, https://doi.org/10.1175/BAMS-D-21-

0125.1.

Raymond, C., T. Matthews, and R. M. Horton, 2020: The emergence of heat and humidity too severe

for human tolerance. Science Advances, 6, eaaw1838, https://doi.org/10.1126/sciadv.aaw1838.

Romps, D. M., 2021: The Rankine–Kirchhoff approximations for moist thermodynamics. Q. J. Roy.

Meteor. Soc., 147, 3493–3497, https://doi.org/10.1002/qj.4154.

Stull, R., 2011: Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteor.

Climatol., 50, 2267–2269, https://doi.org/10.1175/JAMC-D-11-0143.1.

https://github.com/cr2630git/wetbulb_dj08_spedup
https://aus01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.regionalclimateperspectives.com%2Fblog%2Fdavies-jones-revisited&data=05%7C01%7CRob.Warren1%40bom.gov.au%7Cb3ef723c2a2a44b870ca08dbcbbdd160%7Cd1ad7db597dd4f2b816e50d663b7bb94%7C0%7C0%7C638327788337519486%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=yDH6cbtIEB588pMgZosrY7t8uRcuqbsDOIGKOGvQ3PI%3D&reserved=0
mailto:rob.warren1@bom.gov.au
mailto:cassandra.rogers@bom.gov.au
https://doi.org/10.1002/qj.3899
https://doi.org/10.1175/1520-0493(1980)108%3c1046:TCOEPT%3e2.0.CO;2
https://doi.org/10.5194/gmd-8-151-2015
https://doi.org/10.1175/2007MWR2224.1
https://doi.org/10.1088/1748-9326/ab7d04
https://doi.org/10.1175/BAMS-D-21-0125.1
https://doi.org/10.1175/BAMS-D-21-0125.1
https://doi.org/10.1126/sciadv.aaw1838
https://doi.org/10.1002/qj.4154
https://doi.org/10.1175/JAMC-D-11-0143.1

7

Appendix: A more accurate equation for isobaric wet-bulb temperature

We start our derivation from the isobaric moist enthalpy equation:

𝑐𝑝d𝑇 = −𝐿vd𝑞

Here, 𝑐𝑝 is the isobaric specific heat, 𝑇 is the temperature, 𝐿v is the latent heat of vaporisation, and 𝑞

is the specific humidity (water vapour mass fraction). To derive an equation for the isobaric wet-bulb

temperature (which, for simplicity, we will denote here as 𝑇w), we integrate this equation from the true

temperature and specific humidity (𝑇, 𝑞) to the wet-bulb temperature and corresponding saturation

specific humidity (𝑇w, 𝑞s(𝑇w)). A common approximation is to assume that 𝑐𝑝 and 𝐿v are constants. In

this case, we can integrate trivially to obtain

𝑐𝑝(𝑇w − 𝑇) = −𝐿v(𝑞s(𝑇w) − 𝑞)

However, 𝑐𝑝 and 𝐿v are not constants but functions of specific humidity and temperature, respectively:

𝑐𝑝(𝑞) = (1 − 𝑞)𝑐𝑝d + 𝑞𝑐𝑝v = 𝑐𝑝d(1 + 𝑞/𝛾 − 𝑞)

𝐿v(𝑇) = 𝐿v0 + (𝑐𝑝v − 𝑐𝑝l)(𝑇 − 𝑇0)

Here, 𝑐𝑝d, 𝑐𝑝v, and 𝑐𝑝l are the specific heat capacities for dry air, water vapour, and liquid water,

respectively (which are assumed constant), 𝛾 = 𝑐𝑝d/𝑐𝑝v, 𝑇0 = 273.16 K is the triple-point temperature,

and 𝐿v0 = 2.501 × 106 J kg-1 K-1 is the latent heat of vaporisation at the triple point. Substituting in

these definitions and rearranging we obtain

1

𝐿v0 + (𝑐𝑝v − 𝑐𝑝l)(𝑇 − 𝑇0)
d𝑇 = −

1

𝑐𝑝d(1 + 𝑞/𝛾 − 𝑞)
d𝑞

Integrating from (𝑇, 𝑞) to (𝑇w, 𝑞s(𝑇w)) gives

1

𝑐𝑝v − 𝑐𝑝l

ln [
𝐿v0 + (𝑐𝑝v − 𝑐𝑝l)(𝑇w − 𝑇0)

𝐿v0 + (𝑐𝑝v − 𝑐𝑝l)(𝑇 − 𝑇0)
] = −

1

𝑐𝑝v − 𝑐𝑝d

ln [
𝑐𝑝d(1 + 𝑞s(𝑇w)/𝛾 − 𝑞s(𝑇w))

𝑐𝑝d(1 + 𝑞/𝛾 − 𝑞)
]

or, written more concisely,

1

𝑐𝑝v − 𝑐𝑝l

ln (
𝐿v(𝑇w)

𝐿v(𝑇)
) = −

1

𝑐𝑝v − 𝑐𝑝d

ln (
𝑐𝑝(𝑞s(𝑇w))

𝑐𝑝(𝑞)
)

This equation can be solved iteratively using Newton's method. Rearranging we obtain

𝑓(𝑇w) =
1

𝑐𝑝v − 𝑐𝑝l

ln (
𝐿v(𝑇w)

𝐿v(𝑇)
) +

1

𝑐𝑝v − 𝑐𝑝d

ln (
𝑐𝑝(𝑞s(𝑇w))

𝑐𝑝(𝑞)
) = 0

Taking the derivative with respect to 𝑇w

𝑓′(𝑇w) =
1

𝐿v(𝑇w)
+

1

𝑐𝑝(𝑞s(𝑇w))

d𝑞s

d𝑇w

To obtain an expression d𝑞s/d𝑇w we use the definition of saturation specific humidity:

𝑞s(𝑇) =
𝜀𝑒s(𝑇)

𝑝 − (1 − 𝜀)𝑒s(𝑇)

where 𝑒s(𝑇) is the saturation vapour pressure at temperature 𝑇, 𝑝 is the total pressure, and 𝜀 = 𝑅d/𝑅v

is the ratio of the specific gas constants for dry air and water vapour. Taking the derivative of this

equation with respect to temperature using the quotient rule

d𝑞s

d𝑇
=

[𝑝 − (1 − 𝜀)𝑒s(𝑇)]𝜀
d𝑒s

d𝑇
+ 𝜀𝑒s(𝑇)(1 − 𝜀)

d𝑒s

d𝑇
[𝑝 − (1 − 𝜀)𝑒s(𝑇)]2

=
𝜀

d𝑒s

d𝑇
+ 𝑞s(𝑇)(1 − 𝜀)

d𝑒s

d𝑇
𝑝 − (1 − 𝜀)𝑒s(𝑇)

Using the definition of 𝑞s, we note that

8

𝜀

𝑝 − (1 − 𝜀)𝑒s(𝑇)
=

𝑞s(𝑇)

𝑒s(𝑇)

and

1

𝑝 − (1 − 𝜀)𝑒s(𝑇)
=

𝑞s(𝑇)

𝜀𝑒s(𝑇)

We also make use of the Clausius–Clapeyron equation:

1

𝑒s(𝑇)

d𝑒s

d𝑇
=

𝐿v(𝑇)

𝑅v𝑇2

Substituting these in and simplifying, we obtain

d𝑞s

d𝑇
= 𝑞s(𝑇)(1 + 𝑞s(𝑇)/𝜀 − 𝑞s(𝑇))

𝐿v(𝑇)

𝑅v𝑇2

Setting 𝑇 = 𝑇w and substituting back into the equation for 𝑓′(𝑇w), we obtain

𝑓′(𝑇w) =
1

𝐿v(𝑇w)
+

𝑞s(𝑇w)(1 + 𝑞s(𝑇w)/𝜀 − 𝑞s(𝑇w))

𝑐𝑝(𝑞s(𝑇w))

𝐿v(𝑇w)

𝑅v𝑇w
2

Defining

𝑏(𝑇w) =
1 + 𝑞s(𝑇w)/𝜀 − 𝑞s(𝑇w)

1 + 𝑞s(𝑇w)/𝛾 − 𝑞s(𝑇w)

this can be written more succinctly as

𝑓′(𝑇w) =
1

𝐿v(𝑇w)
+ 𝑏(𝑇w)

𝐿v(𝑇w)𝑞s(𝑇w)

𝑐𝑝d𝑅v𝑇w
2

Starting from an initial guess for 𝑇w
(0), the iterative solution is given by

𝑇w
(𝑛) = 𝑇w

(𝑛−1) −
𝑓(𝑇w)

𝑓′(𝑇w)

We can use 𝑇 for the initial guess; however, slightly faster convergence is achieved by using the

mean of the temperature and dewpoint temperature, 𝑇d:

𝑇w
(0) =

𝑇 + 𝑇d

2

Testing shows that the solution convergences to within 0.001°C after a maximum of five iterations, for

temperatures in the range –20 to 50°C and relative humidities in the range 1 to 99 %. This is

considerably faster than Dawei Li's implementation of the approximate equation, which used the

bisection method to solve for 𝑇w (see supplementary material to Li et al. 2020).

