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A top-down approach to projecting market
impacts of climate change
Derek Lemoine1* and Sarah Kapnick2

To evaluate policies to reduce greenhouse-gas emissions,
economic models require estimates of how future climate
change will a�ect well-being. So far, nearly all estimates of
the economic impacts of future warming have been developed
by combining estimates of impacts in individual sectors of the
economy1,2. Recent work has used variation in warming over
time and space to produce top-down estimates of how past
climate and weather shocks have a�ected economic output3–5.
Here we propose a statistical framework for converting
these top-down estimates of past economic costs of regional
warming into projections of the economic cost of future
global warming. Combining the latest physical climate models,
socioeconomic projections, and economic estimates of past
impacts, we find that future warming could raise the expected
rate of economic growth in richer countries, reduce the
expected rate of economic growth in poorer countries, and
increase the variability of growth by increasing the climate’s
variability. This study suggests we should rethink the focus
on global impacts and the use of deterministic frameworks for
modelling impacts and policy.

Cost–benefit integrated assessment models link the climate and
the economy to calculate the optimal carbon tax or the social cost of
carbon. The ‘damage function’ or ‘impact function’ is the crucial link
that translates future warming into economic consequences. Right
from the beginning of climate–economy modelling, the damage
function was recognized as perhaps the most uncertain relation in
these models6,7. Modellers typically derive this relation by assuming
that cumulative warming reduces economic output, assuming a
functional form relating that output loss to global mean surface
temperature, and calibrating that function to estimates of impacts
in particular economic sectors (such as agriculture or tourism) at
low to moderate levels of warming1,2,8–10. However, recent work has
shown that basic assumptions about the functional form of damages
are crucial to policy evaluations11–18, leading some prominent
economists to question the policy relevance of existing integrated
assessment models, given their uncertain underpinnings19,20.

In contrast to this traditional ‘bottom-up’ approach to
constructing a damage function from sectoral estimates of climate
impacts, we develop and apply a new ‘top-down’, macroeconomic-
based approach for constructing an impact function from
historical climate–economy relationships and from climate models’
simulations of future outcomes. Conventional approaches begin
from assumptions about nonlinearities, but the limited history
of warming prevents us from estimating nonlinear economic
responses. Instead of introducing assumptions about nonlinearities
with difficult-to-quantify uncertainties, we focus on extrapolating
observed historical relationships so that our impact functions
can provide a clear, empirically grounded baseline which future

work might extend through further assumptions. Our results are
therefore most relevant to relatively small changes in climate.

An emerging economics literature has begun analysing how
climatic variables affect the broader economy3,4,21–23. In particular,
recent work estimates how year-to-year variations in countries’
temperature and precipitation have affected their annual economic
growth since 1950 and also how changes in countries’ average
temperature and precipitation have affected their longer-run
economic growth5. Through the former channel, future climate
change could affect a country’s ‘short-run’ growth by changing
the interannual variability (that is, year-to-year variance) of its
climate, and through the latter channel, future climate change could
affect a country’s ‘medium-run’ growth by changing its average
climate (defined in our study as ten-year means). Ref. 5 finds
that temperature and precipitation primarily affect the rate of
output growth, not (as integrated assessment models have assumed)
the level of output; that the magnitude and even the sign of
these effects depend on countries’ per-capita income; and that the
relationships are approximately linear. We use adapted versions of
these historical relations to develop impact functions for climate
change (see Methods). Most cost–benefit integrated assessment
models simulate only globalmean surface temperature, not country-
level temperature or precipitation. We therefore relate economic
outcomes to global mean surface temperature by using physical
climate models to simulate the spatially heterogeneous implications
of future global climate change.

Our key contribution is our interdisciplinary statistical frame-
work for converting historical estimates into probability distribu-
tions for the economic impacts of future climate change. Recently,
ref. 24 heuristically transported the country-level impact estimates
from ref. 5 to a global integrated assessment model to estimate the
optimal carbon tax. We instead extend the approach of ref. 5 to
develop distributions for impacts that can be directly implemented
in future global or regional integrated assessment settings. In con-
trast to the heuristic implementation in ref. 24, our statistical frame-
work uses a full physical climate model to connect the estimates of
country-level impacts in ref. 5 to global temperature, allows impacts
to vary continuously with income, and preserves the distinction
between climate and weather shocks.

Figure 1 illustrates the components of our statistical framework
(expanded in Methods). We begin with time series of economic,
population and climate variables by country over the latter half of
the twentieth century (box A). Adapting the fixed-effects estimation
procedure of ref. 5, we estimate how a change in a single year’s
temperature and precipitation affects economic growth for poorer
and richer countries, and we also follow ref. 5 in using long
differences to estimate how longer-run changes in temperature and
precipitation affect economic growth. These regressions generate
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Figure 1 | Schematic of methodology for calculating regional impacts of climate change. Regional impacts (box G) are found by combining historical
relationships between country-level climate and economic growth (box A), physical climate simulations (boxes B and F), projections of economic output
and population (box C), projections of impacts for each country per time step (box D), and aversion to inequality in consumption across countries (box E).
White boxes depict variables calculated within our statistical framework. Coloured boxes depict inputs: each colour corresponds to a di�erent source; solid
borders indicate inputs that are projections of future variables; dotted borders indicate inputs that are data from past years; and dashed borders indicate
inputs that are ethical (or preference) parameters. Mathematical representations are shown in the corners of boxes A and G. See Methods and
Supplementary Information for full explanations.

distributions for parameters governing the economic impacts of past
climate and weather shocks. We then combine these distributions
with physical climate models’ projections of future temperature
and precipitation (box B) and with benchmark socioeconomic
projections for population and economic variables (box C) to obtain
probability distributions for future climate impacts in each country
(box D). We aggregate these country-level impacts to the global
scale by applying ethical criteria that may weight impacts by the
income of each country (box E). To provide a damage distribution
useful for integrated assessment models, the final step summarizes
the projected relationship between regional or global growth and
global temperature change, with global temperature at each time
step obtained from the same physical climatemodels used to project
country-level climate variables (box F). The product of this final
step is a set of probability distributions for the parameters governing
how average global growth and the year-to-year variance of global
growth change with global warming (box G).

Figure 2a,b depicts the expected value of each country’s
distribution for the ‘medium-run’ effects of global warming on
each country’s average economic growth (Fig. 2a) and for the
‘short-run’ effects of global warming on the year-to-year variance
of each country’s economic growth (Fig. 2b), calculated holding
GDP and population fixed at year 2010 values. Figure 2c,d shows
the standardized variables produced by dividing each country’s
expected value by its standard deviation. Strongly positive values in
Fig. 2a indicate that warming increases average growth (a favourable
outcome for countries), whereas strongly positive values in Fig. 2b
indicate that warming increases the variance of growth (which could
be a favourable or unfavourable outcome depending on preferences
and on how that variability is managed). Values greater than 1
(less than −1) in Fig. 2c,d suggest that the bulk of the estimated
distributions are above (below) zero.

Figure 2a shows that, holding income fixed at year 2010 GDP
per capita, a degree of warming over the course of a decade tends
to increase growth by 1–3 percentage points in much of the world.

Figure 2c shows that the possibility of climate damages (that is,
negative impacts) often lies 1–2 standard deviations below the
expected value. However, there are notable exceptions to this rule.
In many parts of sub-Saharan African and south Asia, a degree
of warming reduces growth by up to 2 percentage points. These
effects are primarily driven by the interaction between GDP per
capita and temperature. In the Supplementary Information we show
that the combined impacts map roughly tracks a map of GDP
per capita and that precipitation channels are quantitatively small
compared to temperature channels (and are even beneficial in
much of sub-Saharan Africa). Global warming has heterogeneous
climatic manifestations across these countries, but its effects on
any given country’s market output are primarily determined by
that country’s income level. Richer countries’ economies can benefit
from warming, even as poorer countries are harmed.

These medium-run effects contrast with the effects on the
variance of short-run economic growth. To match the identifying
variation underlying the panel regression in ref. 5, we model future
short-run weather impacts as driven by deviations of temperature
and precipitation from agents’ forecasts (see Methods). Figure 2b,d
shows that, holding income fixed at year 2010 GDP per capita, an
additional degree of cumulative warming around the globe tends
to increase the variability of growth in much of central and eastern
Asia by 10–20% and to increase the variability of growth in much
of the Americas and central Africa by up to 10%. In contrast,
an additional degree of global mean surface temperature tends to
decrease the variability of growth in west Africa by 10–20%, and to
decrease the variability of growth in many Mediterranean countries
by up to 10%. In the Supplementary Information we show that, in
contrast to themedium-run case, a country’s short-run precipitation
channel often affects the variability of growth as strongly as does
its temperature channel. The ratio of annual to decadal variability
of precipitation is greater than for temperature in some regions,
leading to precipitation and temperature having more equal effects
on short-run variability. This is most evident in monsoon regions
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Figure 2 | E�ects of climate on economic growth through changing averages and changing variability. a,c, Expected value (a) and z-score (c) for the
estimated ‘medium-run’ e�ect of a 1 ◦C decadal increase in global mean surface temperature on the rate of economic growth (measured in percentage
points; ψM

r,T in equation (1) in Methods). b,d, Expected value (b) and z-score (d) for the estimated ‘short-run’ e�ect of a 1 ◦C increase in global mean surface
temperature on the interannual variability of the rate of economic growth (measured as a percentage change; ψS

r,T in equation (2) in Methods).

such as southeast Asia and parts of Africa, where failure and in-
tensification of the monsoons can lead to greater forecast errors
in precipitation25.

Figure 3 reports the estimated distributions for the parameters
relating global output growth to global warming using η, a value
representing inequality aversion26,27 (see Methods). As suggested
by the heterogeneous effects depicted in Fig. 2, preferences
over consumption inequality strongly affect the estimated global
relationship. Figure 3a depicts the marginal distribution for the
effect of warming at year 2010 global GDP per capita. Without
any inequality weighting (η= 0), the effects are centred around
zero, balancing the tension between rich countries’ faster growth
and poor countries’ slower growth.However, complementary results
in the Supplementary Information show that the interaction term
(for global temperature and GDP per capita) is fairly large, tending
to make global warming beneficial once the world has become
wealthier on average. These results are largely in line with the
benchmark DICE model, whose bottom-up impacts calibration
does not use equity weighting: because its source studies also suggest
that rich countries are less exposed to climate change, market
channels are only a small component of theDICE damage function1.
Most of the impacts in DICE instead arise from assumptions about
potential catastrophic climate change1.

If integrated assessment models explicitly represent many
geographic regions, then their impact functions can neglect equity
weighting within regions. However, many benchmark integrated
assessment models include only a few regions, or even only a
single global region. In these cases, spatial equity weighting must
be embedded in their impact functions, giving us the change in
the growth rate of consumption for a representative agent. At η=1
(that is, log utility), additional warming is probably beneficial at year
2010 global per-capita income, but at the more conventional η=2
(ref. 28), additional warming is probably detrimental, with themode
suggesting that 1 ◦C of warming reduces global growth by nearly
a full percentage point. Larger values of η shift the distribution

even further towards detrimental effects. In the Supplementary
Information, we show that the interaction term shrinks as η
increases, suggesting that future growth will not quickly convert
warming from a detriment to a benefit for η≥2.

Figure 3b depicts the effects of warming on the variability of
global output growth at year 2010 output per capita. We might
expect that aggregating over a larger region tends to reduce both
the variability of growth and the extent to which that variability
changes with warming: growth and climate are more predictable at
a global level than at the level of an individual country in the same
way that population effects are more predictable than the effects on
any individual. Indeed, we see these distributions are centred closer
to zero, with the mode indicating a slight reduction in variability
for extreme values of η (corresponding to the negative effects on
variability seen in many of the poorest and richest countries) and
indicating a 0.5–1% increase in variability for more common values
of η. These results suggest that the effects of climate change on the
interannual variability of growth aremitigated if regions insure each
other either directly or through trade.

The impact estimates from our framework come with three
caveats, all of which suggest that they are lower bounds. First,
we assume that historical relations between aggregate output and
climate continue to hold for future increments of warming—and
do so in a linear fashion. However, the treatment effects estimated
from past warming may not be constant at future higher levels of
warming. Future work should disentangle the structural channels
through which past climate variables have affected growth and
assess the potential for nonlinear effects as new data become
available. Second, by considering implications of climate change for
national output, we ignore the considerable heterogeneity within
nations. Combining imperfect insurance, equity weighting, and
more geographically refined estimates would probably increase the
estimated losses from climate change, but at present the resolution
of global climate models limits such a project. Third, our impact
estimates include only those channels present in past data. They
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Figure 3 | Distribution of change in growth rate as a function of inequality aversion (η). a, At year 2010 GDP per capita, the estimated marginal
probability density function for the change in the growth rate of global GDP per capita due to a 1 ◦C increase in average global mean temperature over a
decade. b, At year 2010 GDP per capita, the estimated marginal probability density function for the change in the variance of the global growth rate due to
a 1 ◦C increase in global mean temperature. Greater η implies stronger aversion to inequality of GDP per capita among countries.

therefore omit new impact channels such as sea level rise, changing
water supplies, ocean acidification, and nonlinearities due to further
shifts in extreme weather, and they also omit non-market channels,
such as ecological disruption, that are not visible in past GDP
data. Including additional damage channels may affect output or
utility in rather different ways from the aggregate market channels
studied here. Amultipronged impacts relationship would reflect the
multiple pathways by which climatematters, and probably highlight
the crucial role for preferences over environmental goods beyond
their value in economic production.

In conclusion, we have integrated economic and climatic time
series, high-resolution physical climate modelling, and recently
developed benchmark socioeconomic projections to produce
‘top-down’ estimates of climate impacts. Our estimates account
for the heterogeneous effects of global warming on country-level
temperature and precipitation, as well as for the observed sensitivity
of country-level climate impacts to GDP per capita. Our projected
climate impacts depend strongly on aversion to consumption
inequality among nations. Optimal climate policy is likely to be
sensitive not only to preferences for valuing impacts over time
(as has been widely studied) but also to preferences for valuing
impacts over space (which has been less commonly modelled)29.
To investigate these and other questions, integrated assessment
modellers can substitute our new ‘top-down’ estimates of climate
impacts for the much-critiqued impact assumptions at the core
of climate–economy models. Our estimates offer an independent
impact assessment that relies on a different set of assumptions
than those driving conventional ‘bottom-up’ estimates of
climate impacts.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
We here describe the data and the statistical framework. The Supplementary
Information provides mathematical and computational details, additional results
(including decompositions and summary statistics), and robustness checks.

Global climate model simulations. For the medium-run estimation procedure, we
use population-weighted temperature and precipitation for each country from
17 global climate models from the Intergovernmental Panel on Climate Change
(IPCC) Fifth Assessment Report with available simulations for each of the four
Representative Concentration Pathways30: BCC-CSM1-1, CCSM4, CESM1-CAM5,
FIO-ESM, GFDL-CM3, GFDL-ESM2G, GISS-E2-H, GISS-E2-R, HadGEM2-AO,
IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC5, MIROC-ESM,
MIROC-ESM-CHEM, MRI-CGCM3, NorESM1-M and NorESM1-ME. For the
short-run estimation, we do not want to conflate intermodel variability with
interannual variability. We therefore use population-weighted temperature and
precipitation from five simulations of the NOAA-GFDL CM2.5 model following
the RCP8.5 pathway31.

World Bank data set. Initial GDP per capita comes from the World Bank’s
purchasing power parity-adjusted, constant-dollars data set for the year 2010. That
data set is in year 2005 dollars, which we rescale to year 2000 dollars using the
current-dollars data set to match the units in the historical regressions following
ref. 5. Year 2010 population also comes from a World Bank data set. In the global
analyses, the initial log GDP per capita ln(yr0) is 9.0642.

Impacts framework.We seek distributions for the coefficients ψ in the following
two relations:

IMr (1T g
t )=ψ

M
r ,T 1T g

t +ψ
M
r ,Ty1T g

t ln(yrt/yr0) (1)

var(I Sr (T
g
t ))=exp[ψ S

r ,T T
g
t +ψ

S
r ,Ty T

g
t ln(yrt/yr0)] (2)

where IMr and I Sr give the medium- and short-run changes in growth rates in region
r due to time t global mean surface temperature T g

t and conditional on the log
change in per-capita economic output (that is, in per-capita GDP) yrt between the
initial time and time t .1T g

t is the change in global mean surface temperature
between times t−1 and t , yrt is per-capita GDP in region r at time t , and yr0 is
per-capita GDP in region r in the initial period. Note that these equations describe
future impacts. They are not regression equations for application to past data: as
described below, we follow the fixed-effects specifications in ref. 5 when estimating
historical relationships. We project a region’s impacts as a function of global mean
surface temperature rather than of regional climate because we aim to produce an
impact function that will be useful for climate–economy integrated assessment
models, which often simulate only a single global temperature index. At a region’s
initial GDP per capita yr0, the coefficients ψM

r ,T and ψ S
r ,T give the effect of,

respectively, a 1 ◦C increase in decadal global mean temperature on medium-run
growth and a 1 ◦C increase in global mean temperature on the variance of
short-run growth (shown in Fig. 2). The coefficients ψM

r ,Ty and ψ S
r ,Ty describe how

temperature interacts with an e-fold (≈2.7-fold) increase in per-capita GDP.

Calculating probability distributions for ψ j
r . To obtain probability distributions

for each vector of coefficients ψ j
r in equations (1) and (2), we use the law of

conditional probability:

p(ψ j
r )=

∫
p(ψ j

r |ω
j)p(ω j)dω j

We adapt ref. 5 to obtain central estimates and standard errors for the historical
relationship between the climate and the economy (see Supplementary
Information). These parameters define the probability p(ω j) of any sampled set of
historical relationships defined by the vector ω j. Combining this probability p(ω j)

with the conditional probability p(ψ j
r |ω

j) (described below) allows us to calculate
an unconditioned distribution for ψ j

r , which includes the economic uncertainty
about historical climate–economy relationships via p(ω j) and also scientific
uncertainty about how future global mean surface temperature relates to
country-level climatic outcomes via p(ψ j

r |ω
j).

Figure 1 outlines how we calculate the conditional probability p(ψ j
r |ω

j) by
combining state-of-the-art physical climate simulations and socioeconomic
projections to account for the spatially heterogeneous implications of global
temperature change and for uncertainty about those implications. We begin with a
sampled vector ω j (box A) from historical climate–economy relationships,
simulations of temperature and precipitation from physical climate models (box B),
and population and GDP projections from the recently developed Shared
Socioeconomic Pathways (SSPs; box C; ref. 32). All results in the main text use
SSP2, which is the scenario of ‘middle’ challenges. Combining these country-level

socioeconomic projections with the country-level climatic projections and each
sampled ω j yields projected impacts for each country (box D) at each decade (in
the medium-run analysis) or each year (in the short-run analysis).

The medium-run and short-run specifications calculate these future
country-level impacts differently. When estimating medium-run impacts from
changing average weather outcomes, we convert each sampled vector ω j into a
sampled impacts trajectory by multiplying ω j by each time step’s changes in average
temperature and precipitation and by their interactions with log GDP per capita.
Medium-run impacts arise from the change in global mean surface temperature at
each time step rather than the absolute value of temperature because we assume
that impacts over this time frame arise primarily from further changes in average
climate rather than from changes that have already happened and may have
triggered adaptation.

In contrast, when estimating short-run impacts from changing the variability of
the weather, we use forecast errors in place of actual changes in temperature and
precipitation: we match the panel estimation framework from ref. 5 by assuming
that agents are harmed by unexpected weather shocks. This approach differs from
literature that assesses whether the climate becomes more variable as global
temperature increases33–36. To separate uncertainty about future warming from
weather that is surprising conditional on global warming, we assume that agents
correctly anticipate the next year’s global mean surface temperature. Agents then
use a straightforward forecasting rule: a linear projection of time t+1
country-level temperature (or precipitation) on time t country-level temperature
(or precipitation) and time t+1 global mean surface temperature. More complex
forecasting methods exist in both the economics and climate science literatures, but
the chosen rule is a reasonable heuristic for ordinary agents. In the Supplementary
Information we assess robustness to the choice of forecasting rule. Within each
simulation of CM2.5, agents estimate the linear projection’s coefficients via an
ordinary least squares regression of historical country-level temperature (or
precipitation) on lagged country-level temperature (or precipitation) and on
contemporaneous global mean surface temperature. Agents use data from all
previous years to construct forecasts for the next year.

The final steps in calculating the conditional probability p(ψ j
r |ω

j) are to convert
these country-level impacts into regional impacts and then estimate regional
impacts as a function of global mean surface temperature. When the regions of
interest encompass more than one country, we aggregate the country-level impacts
via a social welfare function that can exhibit aversion to unequal consumption over
space (box E). This approach seeks the impacts that affect a regional representative
agent in the same way as the combination of its heterogeneous country-level
impacts. We employ the same type of power utility social welfare function used to
aggregate consumption over time in standard integrated assessment models, where
the parameter η controls the degree of inequality aversion26,27. We vary the
parameter between 0 (no inequality aversion) and 4 (high inequality aversion).
When aggregating outcomes over time, standard integrated assessment models use
values between 1 and 2 (refs 8,37,38), and values between 2 and 4 have also been
recommended as reasonable39,40.

We estimate the parameter vector ψ j
r that best fits a sampled ω j by combining

the simulated regional impacts with the same global climate models’ simulations of
global mean surface temperature (box F). The coefficients and standard errors
produced by this estimation define a distribution for each region’s desired impact
coefficient ψ j

r (box G), which provides us with the probability p(ψ j
r |ω

j) of any
given value of ψ j

r given a sampled value of ω j.
The conditional probability p(ψ j

r |ω
j) captures uncertainty about how global

warming affects country-level temperature and precipitation. This climatic
uncertainty arises from variation across physical climate models and across
emission scenarios; it does not include uncertainty generated by biases common to
all physical climate models41. Uncertainty about the relationship between future
country-level climatic outcomes and growth is captured by p(ω j), which reflects
variability in the late twentieth century data but does not reflect uncertainty about
how the historical relationship may change at higher levels of warming. Combining
p(ψ j

r |ω
j) and p(ω j) generates a distribution for the coefficients in the relationship

describing impacts for region r as a function of global temperature, reflecting both
uncertainty about the historical relationship between country-level climate and the
economy and uncertainty about the future relationship between global warming
and country-level climate.
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