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Abstract This study was motivated by two main concerns
including (a) prediction of the Persian Gulf Sea surface tem-
perature (PGSST) anomalies using an autoregressive integrat-
ed moving average (ARIMA) model and (b) detection of the
climate change signatures in the considered SST data. An
ARIMA model was, therefore, developed to predict the SST
anomalies having lead times from 1 to 3 months. While the
SST time series for the period of 1950–2006 used to fit the
model, corresponding records for January 2007 to June 2011
were applied as the test data. The developed model had a
minimum value of Akaike information criterion, and its pa-
rameters were significantly different from zero. The correla-
tion coefficients between the observed and simulated data for
the lead times of 1, 2, and 3 months were found to be
significant and equal to 0.72, 0.69, and 0.65, respectively.
The corresponding hit rates were estimated as 79, 75, and
72 %, indicating a reasonable forecasting capability of the
model. The Heidke’s forecast scores were 0.59, 0.52, and 0.48
for the prediction schemes having 1, 2, and 3 months of lead
time, respectively. It is shown that the Persian Gulf skin
temperatures have warmed up about 0.57 °C during the 732
successive months of the period 1950–2010 noted as an
upward significant trend. Although a significant trend was
not evident for the 1950–1969 and 1970–1989 period, the
PGSST has abruptly increased during the recent two decades.
Almost all of the observed warming in the PGSST data is
related to this period.
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Introduction

The Persian Gulf (Fig. 1) Sea surface temperature (PGSST)
plays an influential role in precipitation variability over most
parts of Iran and particularly its southwestern districts.
Previous studies indicated that the above normal winter
precipitation in southern Iran generally coincides with the
periods that the SSTs are below their climatological mean
(Nazemosadat 1998). On the other hand, the frequency of
wintertime droughts generally corresponds to the spells
that SSTs are above normal. Nazemosadat and Shirvani
(2006) used the canonical correlation analysis (CCA) to
assess the potential of PGSST data as the precipitation
predictor in southwestern Iran. According to their reports,
the first four empirical orthogonal functions of these SSTs
accounted for about 27 % of total variance in winter
precipitation of the study areas. Nazemosadat et al.
(2008) analyzed the couple effects of the PGSST and the
El Niño Southern Oscillation on rainfall variability in
western and northwestern parts of Iran. They have shown
that during the El Niño years, positive/negative anomalies
of the PGSSTs generally coincided with above/below nor-
mal winter precipitation over the study area. For the La
Niña episodes, however, wet or dry events are expected
for these regions if the PGSSTs are colder or warmer than
usual, respectively. In other words, wet or dry wintertime
is expected for western and northwestern parts of Iran
when the PGSST anomalies are in-phase or out-phase with
the corresponding anomalies over equatorial parts of the
eastern Pacific Ocean. Kämpf and Sadrinasab (2006)
employed a three-dimensional hydrodynamic model to study
the circulation and water mass properties of the Persian Gulf.
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They reported that the this water body experiences a distinct
seasonal cycle in which a Gulf-wide cyclonic overturning
circulation establishes in spring and summer, but this disinte-
grates into mesoscale eddies in autumn and winter. Johns et al.
(2003) studied the water exchange between the Persian Gulf
and the Indian Ocean through the Strait of Hormuz.

Yao and Johns (2010) studied the circulation and water
mass transformation processes in the Persian Gulf and the
water exchange with the Indian Ocean through the Strait of
Hormuz using the Hybrid Coordinate Ocean Model. Their
results suggest that the intruded Indian Ocean surface water
is transformed into hypersaline waters with salinity >41 prac-
tical salinity unit by the fresh water loss in the northern end of
the Gulf and in the southern shallow banks. Bauman et al.
(2012) examined the size structure of four locally abundant
corals in two regions of the Persian Gulf: the southern
Gulf (Dubai and Abu Dhabi) and eastern Gulf (western
Musandam). They reported that all corals in the southern
Gulf were significantly smaller, and their size structure
positively skewed and relatively more leptokurtic (i.e.,
peaky) compared to corals in the eastern Gulf. They have
indicated that sea surface temperature, salinity, and the
recent frequency of mass bleaching are all higher in the
southern Gulf, suggesting higher mortality rates and/or
slower growth in these populations. Copsey et al. (2006)
presented strong evidence that the Indian Ocean warming
was associated with local increases in sea level pressure
during the period 1950–1996.

A variety of mathematical and statistical approaches are
applied to forecast the tropical SST data. Among the commonly
used techniques are CCA (e.g., Barnston and Ropelewski
1992; Landman and Mason 2001), hybrid coupled modeling
(e.g., Neelin 1990; Syu et al. 1995), linear inverse modeling
(Penland and Magorian 1993; Penland and Matrosova 1999),
Markov modeling (Xue et al. 2000), ensemble techniques
(Krishnamurti et al. 2006), and neural networks (Martinez
and Hsieh 2009). The outcome of such studies is routinely used
for operational forecasting of the global tropics SST by the
Physical Sciences Division, Earth Physical Laboratory, and
National Oceanic and Atmospheric Administration (NOAA)
at http://www.esrl.noaa.gov/psd/forecasts/seasonal/. In spite of
such attention to equatorial regions, less consideration is given
to the prediction of extratropical SSTs and particularly local
water bodies such as the Persian Gulf.

Although autoregressive integrated moving average
(ARIMA) models have been widely used in various scientific
and engineering applications, to the best of our knowledge,
not much research has been done applying suchmodels for the
prediction of SST behavior over tropical or extratropical
ocean waters. Chu and Kats (1985, 1987) identified an
ARIMA model for the prediction of monthly and seasonal
values of the Southern Oscillation Index (SOI). Baker-Austin
et al. (2012) have recently used ARIMA model to project the
SST data for the Baltic Sea up to year 2050. Mazaris et al.
(2004) developed some ARIMA and regression models to
forecast variations in the breeding activity of loggerheads at

Fig. 1 The geographical location of the used grids in the Persian Gulf and northern parts of the Indian Ocean
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the Zakynthos Island, West Greece. In general, the ARIMA
processes have several advantages over other methods includ-
ing its capability to simulate the path of forecasting, its rich
information on time-related changes, and the consideration of
serial correlation between observations.

In addition to forecasting, analyzing the SST time series is
also critically important for the detection and modeling of
climate change. The trend in global SST is one of the primary
physical impacts of climate change that affects the interactions
between ocean, atmosphere, and land in global and local
scales. On the basis of Baker-Austin et al. report (2012),
the observed warming patterns in the Baltic Sea SSTs
coincided with the unexpected emergence of Vibrio infec-
tions in northern Europe. Nazemosadat et al. (2006) de-
tected the climate change signal in Iran’s precipitation that
was consistent with the change in SOI data for the period
1951–1999. According to their findings, the mid-1970s is
the most probable change-point year for these two distinct
datasets.

The aim of the present study is to develop an ARIMA
model for the prediction of SST anomalies over the Persian
Gulf. Furthermore, detecting significant trend in the monthly
SST data is the other goal of the study. The study has also
endeavored to differentiate the natural and anthropogenic
signals of climate change over the Persian Gulf.

SST data

Monthly SSTanomalies of six 2°×2° resolution grid points in
the Persian Gulf (Fig. 1) as well as for 25 grid points in
tropical parts of the Indian Ocean (IO: 60°E to 70°E; 5°N to
15°N) were gratefully obtained from the NOAA Improved
Extended Reconstructed SST version 3 (ERSST.v3) database
for the period 1951–2011 (Smith et al. 2008). This database
has already been bias-adjusted for the period after 1985 using
the satellite-based infrared data collected from the advanced
very high resolution radiometer (AVHRR). The dataset is
available online at http://www.esrl.noaa.gov/psd/data/gridded/
data.noaa.ersst.html.

The obtained anomalies were firstly weighted according to
cosine value of their associated grids. The anomalies are
computed with respect to 1971–2000 month climatology as
described by Xue et al. (2003). The average values of these
anomalies (for the prescribed 6 and 25 grids) were then
computed and used as the Persian Gulf and the Indian
Ocean SSTs, respectively. The SST data over the Indian
Ocean tropics were used for comparison with the Persian
Gulf SSTs as will be discussed later.

For assessing the reliability of the applied SST data
(ERSST.v3) and for consolidating our results, the study has
also simultaneously analyzed another high temporal (1 day)
and spatial (0.25°×0.25° grids) resolutions of the satellite-

based SST dataset (Martin et al. 2012; Reynolds et al. 2007).
The Optimum Interpolated version of this SST product
(namely, level 4 of OISST) which is available for the periods
after 20 September 1981 was extracted from http://www.ncdc.
noaa.gov/oa/climate/research/sst/oi-daily-information.php
webpage. For making these high resolution data compatible
with the ERSST.v3 SSTs, the OISSTs records were averaged
in time and space to produce the monthly 2°×2° SST time
series. Difference between the monthly values of these two
datasets as well as between their associated ARIMA models
was then investigated.

For model development, the applied anomaly series were
divided into two sets of records consisting of January 1950 to
December 2006 (684 months) and January 2007 to June 2011
(54 months). While the first dataset was used for developing
the proposed ARIMA model, the later one was applied for
model verification.

For detecting the climate change signals, characteristics of
the SST-time regressions were examined for the whole record
length of the study period (1950 to mid-2011, 738 months).
These regressions were applied for both the Persian Gulf
and Indian Ocean datasets. Furthermore, the considered
738 months were divided into 240, 240, and 252 succes-
sive months (1950–1969, 1970–1989, and 1990–2010,
respectively) and their trend lines were captured and com-
pared. The Indian Ocean dataset was assumed to be an
unimpaired dataset that is affected by natural rather than
anthropogenic sources of climate change. Therefore, com-
parison between climate change signals of this dataset
with corresponding records of the Persian Gulf was con-
sidered as an alternative way for differentiating between
the natural and anthropogenic sources of climate over the
Persian Gulf.

Methods

ARMAversus ARIMA

Autoregressive (AR) and moving average (MA) models
can effectively be coupled to form a general and useful
class of time series called autoregressive moving average
(ARMA) models. In an ARMA model, the current value
of the time series is expressed as a linear aggregate of p
previous values and a weighted sum of q previous devia-
tions (original value minus fitted value of previous data)
plus a random parameter.

Since ARMA models prefer stationary datasets as an input
file, a differencing procedure is generally considered as a
smart approach for transforming nonstationary series into the
stationary series (Box and Jenkins 1976). In this case, instead
of ARMA, the ARIMA models are used. Box and Jenkins
(1976) popularized ARIMAmodels as ARIMA(p, d, q), where
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p and q are the orders for nonseasonal AR and MA, respec-
tively. The nonseasonal differencing parameter that shows
how many differencing steps used for making the series
stationary is shown by d. The general format of the ARIMA
model is:

And

θq Bð Þ ¼ 1þ θ1Bþ θ2B
2 þ…þ θqB

q; ð3:3Þ

The ordinary difference component is defined by∇d=(1−B)d,
where B is the backshift operator defined by Bdxt=xt−d.

Model development

Developing an ARIMA model consists of three stages
including model identification, parameter estimation, and
diagnostic checking (Box et al. 1994). For a given time
series, these three stages are repeated until an optimized
model is identified. In the first step, some initial models,
which seem to represent the time series behavior and are
worthy of parameter estimation, are identified (Box et al.
1994; Shumway and Stoffer 2006). This identification is
essentially based on the characteristics of both autocorre-
lation and partial autocorrelation functions (ACF and
PACF, respectively). Since these functions are practically
unknown, they have to be estimated in order to identify a
tentative model fitted to the observed series. In other
words, the goal of model identification is coupling the
unknown patterns in the sample ACF and PACF models
with the already known of these two patterns in ARIMA
models.

After the model was identified, parameter estimation needed
to be considered. The model parameters should satisfy two
conditions, namely stationarity and invertibility for the AR
and MA parameters, respectively. Furthermore, relevant statis-
tical tests should be considered to investigate if the estimated
parameters are significantly different from zero. The values of
standard error of estimation are also important and need to be
assessed. As the parameters were estimated, the model adequa-
cy was examined by checking whether wt (in equation 3.1) is a
white noise random variable with zero mean and constant
variance. We therefore used the ACF analysis to check if the
estimated residual series bwtð Þ are white noise and do not
exhibit any sign of nonrandomness.

Another useful statistical test which examines if the resid-
uals are independent is the Box and Pierce (1970) or Ljung
and Box (1987) test which is denoted by Q in the following
equation.

Q ¼ n nþ 2ð Þ
X
h¼0

H bρ2e hð Þ
n − h

; ð3:4Þ

Where bρe hð Þ is the estimated autocorrelation coeffi-
cient of the residuals and n is the sample size. Ljung and
Box (1987) showed that under the null hypothesis of
model adequacy, Q statistic generally follows a χ(H−p−q)

2

distribution. Thus, one would reject the null hypothesis
at level α if the value of Q exceeds the (1−α) quantile of
the χ(H−p−q)

2 distribution.
In addition to the mentioned tests, we examined model

adequacy by using the Akaike’s information criterion (AIC)
as introduced by Akaike (1974). The bias corrected from of
AIC suggested by Sugiura (1987) is defined as

AICc ¼ ln bσ2

k þ
nþ k

n−k−2
ð3:5Þ

Where bσ2
k is the variance of residuals in sample data and k

is the number of model’s parameters. Among various values
of k, that statistic which yields minimum amount of AICc
signifies the best model.

Detection of climate change

As indicated earlier, for each of the constructed time series
with 732, 240, or 252 records, the SST-time regression
was performed. In other words, linear trends of the SST
series were computed for 1950–2011, 1950–1969, 1970–
1989, and 1990–2010 periods. In addition to the whole
Persian Gulf, we also examined the climate change signals
for the northern and southern parts of the Gulf separately.
While the average values of SST in grids 1, 2, and 3
made up the time series for the northern part of the Gulf,
corresponding values for grids 4, 5, and 6 were considered
as the SST data for southern parts of this water body
(Fig. 1).

In addition to the Persian Gulf region, similar time-SST
regression was also performed for another SST dataset
which is obtained by averaging the 2°×2° SST data
over a selected part of the eastern Indian Ocean tropics
bounded between 60 and 70°E and between 5 and
15 N. This tropical part of the Ocean is located in the
southeastern side of the Persian Gulf and is far from the
continental coastlines and isolated from the anthropogenic
signals of climate change. Comparison of the trend lines of
historical SST data between these two distinct regions is
considered as a reasonable approach for differentiating the

2124 Arab J Geosci (2015) 8:2121–2130

φp Bð Þ∇dxt ¼ θq Bð Þwt ð3:1Þ

Where wt is the white noise random variable. The ordinary
autoregressive and moving average components are, respec-
tively, represented by:

φp Bð Þ ¼ 1−ϕ1B − φ2B
2 −…þ φpB

p; ð3:2Þ



anthropogenic and natural sources of climate change over
the Persian Gulf.

Results

Ground-based versus satellite-based SSTs

The difference between historical values of ERSST.v3 and
OISST AVHRR datasets (ERSST.v3–OISST) was calculated
for the considered grid points over the Persian Gulf and Indian
Ocean tropics (Fig. 2). The difference values were equal to
1.2, 0.19, 0.77, 0.25, −0.11, and 0.20 °C for grids 1, 2, 3, 4, 5,
and 6 of the Persian Gulf, respectively (Fig 1). The difference
was, however, generally smaller for the Indian Ocean SSTs.
For instance, the subtraction result was equal to 0.22 °C for the
grid located at 66°E and10°N. According to these statistics,
for both of the study areas, the ground-based data are

consistently greater than corresponding satellite-based series.
Furthermore, differences are higher for the coastal regions and
drop to its minimum values over the central parts of the
considered water bodies.

Prediction of the PGSST data

The time series of the PGSST anomalies, say pgsstt, from
January 1950 to December 2006 was used for model devel-
opment (Fig. 3). Since the ERSST.v3 dataset contained a
longer record length, the ARIMA model was basically
developed according to this dataset. The outputs were then
compared with the similar models that were developed
based on both ERSST.v3 and OISST for the periods after
1981. Results of this comparison revealed that the model
structure and its associated orders are identical for all of the
used datasets. Model coefficients were, however, found to be
sensitive to the record length and the data acquisitionmethods.
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Fig. 2 The time series plot of ERSST (solid) and OISST (dash) for the Persian Gulf
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The herein presented discussion and results are, therefore,
related to the ERSST.v3 dataset which started since 1950.
The applied simple linear regression analysis revealed a sig-
nificant (at 95% level) upward trend in this dataset as follows:

pgsstt ¼ β1t þ β0 þ wt; t ¼ 1; 2;…; 684;

Where wt is the white noise random variable and t is the
time in months starting at January 1950. The estimated slopebβ1 was equal to 0.000605 °C/month, with standard error of
8.9×10−5°C/month, indicating the existence of a significant
warming trend in the applied time series. The Gulf SST has,

therefore, increased by about 0.4°C for the period 1950–2006.
Due to this significant upward trend, a first order differencing
procedure (d=1) was performed to de-trend the dataset. The
ACF analysis of the differenced series showed significant
correlations at lags 1 and 2 (Fig. 4a) suggesting that
the moving average model has two or less parameters
(i.e., q≤2). Since the plot of partial autocorrelation function
exhibited significant correlations for the lags less than 5, an
AR model with order 4 was suggested. After order identifica-
tion, equations 3.2 and 3.3 were used to estimate the parameter
values. The significance values of these parameters were
eventually examined using the t test.

Among the candidate models, the most appropriate one
which has minimum value of AICc was identified as the best
choice. The selected optimal model which has ARIMA (1, 1, 2)

structure and error variance of bσ2
w ¼ 0:115 is:

1−0:48 0:087ð ÞB
� �

∇1pgsstt ¼ 1−0:82 0:097ð ÞB−0:13 0:080ð ÞB2
� �

wt ð4:1Þ

The given values in the parentheses signify the parameters’
standard errors of estimate. All the presented coefficients
were found to be statistically significant. For example, the
t value of 0.48/0.087=5.5 is significantly greater than the
quantile of t distribution with α=0.05 and 680° of freedom
(t0.025(680)=1.96).

Time series plot of the standardized residuals in Fig. 5a
does not show any increasing or decreasing pattern. The ACF
of these residuals (Fig. 5b) indicates no apparent departure
from themodel assumptions aswt in equation 4.1 being a white
noise random variable. The Ljung-Box-Pierce test statistic was
found significant at lags H=1 through H=20 (Fig. 5c). The

Fig. 4 a Sample autocorrelation function and b sample partial autocor-
relation function of the differenced Persian Gulf sea surface temperature
anomalies time series. The dashed lines indicate the interval of � 1:96ffiffi

n
p

Fig. 5 a Time series plot of the
standardized residuals. b Sample
autocorrelation function of the
standardized residuals. The
dashed lines shown on plot b
indicate the interval � 1:96ffiffi

n
p for a

white noise sequence;
approximately, 95 % of the
sample ACFs should be within
these limits. c The p values for
Ljung-Box test at different lags.
The dashed line shown on c plot
indicates 1:96ffiffi

n
p
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significant p value of the Kolmogorov-Smirnov normality test
suggests that the residuals are normally distributed. Overall,
according to the given information in Fig. 5, the proposed
ARIMA model is adequately fitted.

Model verification

To verify the forecasting capability of the developed model,
the PGSST anomalies were predicted from January 2007 to
June 2011 as an independent test. For instance, when the lead
time is 1 month, the SST anomaly of January 2007 was firstly
predicted. After this, a new ARIMA model with the period of
January 1950 to January 2007 was developed to predict the
PGSST anomaly for February 2007. This procedure was se-
quentially repeated 54 times to predict the PGSST anomalies
from January 2007 to June 2011. Similar data prediction was
also performed for the lead times of 2 and 3 months. For
instance, if the last observed SST data is for February of a
year, the model with lead time 1, 2, and 3 months will predict
the anomalies data of months March; March and April; and
March, April, and May of that particular year, respectively.

Figure 6 illustrates concurrent variations of the observed and
predicted PGSST anomalies for the period January 2007 to
June 2011 with 1 month lead time. Upper and lower bounds
of the 95 % confidence interval of the predicted values are also
depicted. As indicated, the applied ARIMA model has recog-
nized the upward trend in the historical data so that all predicted
values lie within their 95 % confidence interval. The Pearson
correlation coefficient between observed and predicted PGSST
anomalies at lead time 1, 2 and 3 months were, respectively,
0.72, 0.69, and 0.65, all statistically significant at 95 % level.
The corresponding root mean square errors were 0.33, 0.35,
and 0.37 °C.

A 3×3 contingency table was constructed to evaluate the
forecast skill of the model (Table not shown). For this evalu-
ation, we characterized cold events as those months for which
the observed or predicted SST values are less than the x−stdev .
Likewise, those values for which the SST anomalies were

greater than x−stdev were categorized as the warm incidents.
Normal condition was considered as those periods for which
the SST anomalies were between these two ranges. The cold,
neutral, and warm events were counted in both observed and
predicted series, and the results were put in contingency table.

Due to the fact that the SST is rapidly increasing in the recent
years, no cold event was found in either observed or predicted
data. A collapsed form of the 3×3 table which is a 2×2 contin-
gency table was, therefore, used for further analysis (Table 1).
The given results suggest that hit rate or the ratio of correct
forecast to the total number of cases is 43/54, indicating 79 %
the predictions are correct. The hit rate was 75 and 72% for the 2
and 3 months lead time predictions, respectively. Furthermore,
for 1 month lead time, the Heidke’s forecast score (Wilks 2011)
was found to be 0.59 that is compatible with the results reported
by Haklander and Delden (2003) and by Bloomfield et al.
(2012). According to these statistics, the developed ARIMA
model improved the prediction skill by 59 % as compared with
random forecast. The reference accuracy measure in the Heidke
score is the correct proportion that would be achieved by ran-
dom forecasts that are statistically independent of the observa-
tions (Wilks 2011). The Heidke’s forecast score was found to be
52 or 48 % for 2 or 3 months lead times, respectively.

Detecting the climate change signals

The estimated slope of the Persian Gulf SST bβ1

� �
for the

period 1950–2010 was equal to 7.9×10−4°C/month with
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Table 1 Contingency table for the verification of the predicted PGSST
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Obs\Pred (model) Normal Warm Obs

Normal 22 3 25

Warm 8 21 29

Pred 30 24 n=54
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standard error of 8.1×10−5°C/month (Fig. 7d). The corre-
sponding t statistic proved the existence of a significant

increasing trend in the SST anomalies for this period. The
PGSST has, therefore, warmed up by about 0.57 °C during
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Fig. 7 Time series and trend line
plots of the PGSST and north
Indian Ocean SST anomalies for
the a 1950–1969, b 1970–1989,
c 1990, 2010, and d 1950–2010
periods
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this period. The estimated slopes bβ1

� �
for the period 1950–

1969 and 1970–1989 were equal to 5.9×10−4°C/month and
1.3×10−4°C/month indicating the existence of insignificant
upward trends (Fig. 7a, b). The slope, however, increased to
3.9×10−3°C/month for the period of 1990–2010, which is
strongly significant (Fig. 7c). According to the observational
records, the mean PGSSTs for these three periods are 26.57,
26.44, and 26.90 °C, which implicate a slight cooling event
over the Gulf during 1960–1989 and an abrupt warming trend
for the recent period. This upward trend is about 6.5 times
greater than the corresponding values for the period of 1950–
1969, suggesting serious threats for the Gulf’s ecosystem and
biodiversity (Baker-Austin et al. 2012).

Table 2 delineates the trend line slope for southern and
northern parts of the Persian Gulf. As indicated, the slope is
very smooth and insignificant for the period 1970–1989 for
both areas. An abrupt upward trend is, however, evident for
both sides and particularly northern areas of the Gulf for the
period 1990–2010. While the ratio between the slopes of the
recent period to the period 1970–1989 is about 15 for southern
side, it is about 102 for northern parts of the Gulf. In contrast
to the recent two decades, for both periods of 1950–1969 or
1970–1989, the warming trend in northern side were signifi-
cantly less than corresponding slopes of southern region. The
sudden and threatening warming trend over the northern side
of the Gulf needs further explanation.

The obtained Indian Ocean SSTs also exhibited upward
trends for all of the 1950–1969, 1970–1989, 1990–2010,
and 1950–2010 periods. The slope of the obtained trend
lines were, respectively, estimated as 2.2×10−3°C/month,
9.6×10−4°C/month, 1.2×10−3°C/month, and 1×10−3°C/month
indicating a consistent and significant upward trend of these
SSTs during last six decades (Fig. 7a–d). With the exception
of the period 1990–2010, the Indian Ocean’s upward trend
is astonishingly greater than the corresponding values for
the Persian Gulf which is surrounded by arid areas in Iran,
Iraq, and the Arabian Peninsula. According to the given
statistics, warming trends over the Indian Ocean tropics
were about three and seven times more than corresponding
values for the Persian Gulf during the period 1950–1969
and 1970–1989, respectively. These ratios, however, dropped
to about 0.3 for the 1990–2010 era implicating a sudden
and very sharp upward trend for the Gulf SSTs during the
last two decades.

While both of the Persian Gulf and Indian Ocean SSTs
have experienced their lowest warming trend during the period
1970–1989, the highest upward trend over these water bodies
occurred during the periods of 1990–2010 and 1950–1969,
respectively. In other words, in contrast to the PersianGulf, the
highest warming trend over the considered oceanic areas is
related to six to four decades ago. While the ratio between the
highest and lowest slopes is about 2.3 for the oceanic area, this
ratio reached to 30 for the Persian Gulf region implicating an
unexpected jump of this slope over this water body during the
1990–2010 period. Such a sharp warming trend over the
Persian Gulf is, therefore, not consistent with either previous
SST trend over this water body or corresponding trend over
the considered Ocean waters.

Conclusions

Prediction of the Persian Gulf SST anomalies by developing
ARIMA models and investigating the signatures of climate
change on these SST dataset were two main concerns of the
present study. Ground-based and satellite-based SST datasets
(ERSST.v3 and OISST, respectively) were applied to examine
the reliability of the applied data and the effect of data acqui-
sition methods on the model characteristics. In addition to the
Persian Gulf region, the corresponding SST data over north-
western parts of the Indian Ocean tropics were also analyzed.
This analysis was conducted to differentiate the natural and
anthropogenic sources of climate change over the Persian
Gulf. After examining various criteria and thresholds, an
elegant ARIMA model, characterized as ARIMA(1,1,2),
was developed to predict monthly, two monthly, and three
monthly values of the PGSST anomalies. The SST anomalies
associated to the ERSST.v3 database was generally found to
be greater than corresponding values related to the OISST
dataset. Although the model structure was identical when
either ERSST.v3 or OISST datasets was used, the model
coefficients were found to be dependent on these data sources.

According to the given results, the developed ARIMA
model has the hit rate of about 79 % for 1 month lead time
suggesting that only 21 % of the predicted events are statisti-
cally different with observed events. The hit rate was found to
be 75 and 72 % for 2 and 3 months lead times. Furthermore,
the Heidke’s forecast skill score for 1 month lead time was
about 0.59. This suggests that, compared to random predic-
tion, the model improved the prediction accuracy by about
60 % which is a reasonable forecast skill. For two or three
monthly prediction, this forecast skill was estimated as 52 and
48%, respectively. A significant upward trend was detected in
the monthly data of the PGSST for the period 1950–2010.
Although the trend was not significant for either 1950–1969
or 1970–1990 periods, a sharp increase rate was found for the
1990–2010 period. The observed recent warming trend that is

Table 2 The slope of the
PGSST’s linear trends
for southern and northern
parts of the Gulf

a Significant slope at 5 %
level

Period\Parts Southern Northern

1950–1969 0.00108a 0.00012

1970–1989 0.00023 0.00004

1990–2010 0.00349a 0.00411a

1950–2010 0.00085a 0.00073a
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6.5 greater than corresponding values during 1950–1969
threatens the ecosystem, natural resources, and biodiversity
of this water body. It was found that for both of the 1950–1969
and 1970–1989 periods, the SST fluctuations over the southern
parts of the Gulf had steeper warming trend as compared with
northern areas. Northern regions, however, experienced a
sharper increasing temperature trend during 1990–2011 as com-
pared with southern parts. It was shown that the Indian Ocean
SSTs have also experienced a significant steady warming trend
during the last six decades. With the exception of the recent two
decades, the increasing trend over the Persian Gulf was lower
than the corresponding trend for the Indian Ocean.
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