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ABSTRACT

All analyses of the impact of urban heat islands (UHIs) on in situ temperature observations suffer from
inhomogeneities or biases in the data. These inhomogeneities make urban heat island analyses difficult and can
lead to erroneous conclusions. To remove the biases caused by differences in elevation, latitude, time of ob-
servation, instrumentation, and nonstandard siting, a variety of adjustments were applied to the data. The resultant
data were the most thoroughly homogenized and the homogeneity adjustments were the most rigorously evaluated
and thoroughly documented of any large-scale UHI analysis to date. Using satellite night-lights–derived urban/
rural metadata, urban and rural temperatures from 289 stations in 40 clusters were compared using data from
1989 to 1991. Contrary to generally accepted wisdom, no statistically significant impact of urbanization could
be found in annual temperatures. It is postulated that this is due to micro- and local-scale impacts dominating
over the mesoscale urban heat island. Industrial sections of towns may well be significantly warmer than rural
sites, but urban meteorological observations are more likely to be made within park cool islands than industrial
regions.

1. Introduction

a. Impetus for this analysis

As just about every introductory course on weather
and climate explains, urban areas are generally warmer
than nearby rural areas. Often referred to as the urban
heat island (UHI) effect, urbanization has long been
regarded as a serious contamination of the climate signal
(e.g., Landsberg 1956). Those of us working with cen-
tury-scale instrumental climate data strive to remove all
sources of artificial biases from the data. So the UHI
contamination is one aspect dataset creators seek to ad-
dress. For example, the Global Historical Climatology
Network (GHCN; Peterson and Vose 1997) consists of
over 7500 temperature stations around the world that
were identified as rural, urban, or an in-between class
of small town using information on operational navi-
gation charts and a variety of different atlases. A rural
station was any station not associated with a town of
over 10 000 population.

However, there were problems with the operational
navigation charts. Much of the information going into
the charts was over a decade old. Some towns that were
rural a decade or two ago have since been engulfed by
sprawling urban centers. Therefore, another approach to
identifying which stations were rural and which were
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urban was sought. A good current source of information
is night-lights data from the Defense Meteorological
Satellite Program (DMSP). Owen et al. (1998) devel-
oped an approach to identify locations as urban, rural,
or suburban using night-lights data as have other re-
searchers (e.g., Hansen et al. 2001). These night-lights
rural/urban metadata avoid some of the shortcomings of
the map-based metadata.

To find out how contaminated global temperature
trends were from the UHI, Peterson et al. (1999) iden-
tified each station in GHCN using both the map-based
and the satellite-based metadata. Two time series were
then created. One was the time series from the full da-
taset, the one used routinely to determine global tem-
perature trends over land areas at the National Climatic
Data Center (e.g., Lawrimore et al. 2001), and another
one produced using only data from stations that were
identified as rural by both techniques. The two time
series were very similar. The linear trend from 1880 to
1998 was 0.658C century21 for the full dataset and the
slightly higher 0.708C century21 for the rural-only sub-
set. The resulting conclusion was that the well-known
global temperature time series from in situ stations was
not significantly impacted by urban warming.

The research presented here attempts to unravel the
mystery of how a global temperature time series created
partly from urban in situ stations could show no con-
tamination from urban warming. This is important to
improving our understanding of the UHI contamination
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of in situ temperature observations and therefore the
fidelity of the climate change measurements. This point
is highlighted by the fact that some ‘‘greenhouse skep-
tics’’ continue to argue that a significant portion of the
observed warming is only an urban effect (Hansen et
al. 2000).

b. The central problem with in situ data

The central problem with any long-term analysis of
climate data is that the data are unlikely to be homo-
geneous. Indeed, some researchers, such as I. Auer
[quoted in Peterson et al. (1998)], believe that all long-
term time series are inhomogeneous. This agrees with
the experience in the United States with the stations in
the U.S. Historical Climatology Network (USHCN; Eas-
terling et al. 1996). This dataset of the most homoge-
neous long-term U.S. stations has an average of six
discontinuities per century and not a single station is
homogeneous for its full period of record. A wide va-
riety of factors can cause inhomogeneities in long-term
time series. These primarily are as follows:

1) changes in location (station moves that involve
changes in latitude, longitude, or elevation);

2) changes in observing practices (of particular concern
are changes in the time of once-daily observing and
resetting of maximum and minimum thermometers);1

and
3) changes in instrumentation. (Not all thermometers are

created equal, and even equal thermometers give dif-
ferent readings in different housings. Therefore, the
change from one type of thermometer to another can
cause an artificial warming or cooling in the data.)

Many international researchers have expended a great
deal of effort to adjust climate data to account for these
inhomogeneities [see Peterson et al. (1998) for a re-
view]. GHCN is no different. Using statistical approach-
es described in Peterson and Easterling (1994) and Eas-
terling and Peterson (1995), GHCN station data were
adjusted to compensate for all the inhomogeneities that
could be detected. This presents an interesting problem
for the assessment of the effects of urbanization. The
data are inhomogeneous so they need to be adjusted.
Yet if the adjustment technique can successfully identify
and account for a discontinuity caused by changing from
one thermometer to another, the techniques may well
identify and compensate for abrupt changes associated
with urbanization such as paving nearby grass. There-

1 In the United States, mean daily temperature is the average of
maximum temperature (Tmax) and minimum temperature (Tmin). If
a station observes in the afternoon, and day 2 is colder than day 1,
then the maximum temperature of day 2 may well be the temperature
from the afternoon of day 1 when the maximum/minimum temper-
atures were reset. This gives a warm bias to the data. Conversely, if
the observations are in the early morning near the coldest time of
the day, the effect on minimum temperature observations can impart
a cold bias.

fore, the inhomogeneity of the data and the approaches
to compensate for the inhomogeneities can have strong
impacts on assessments of the UHI’s effect on in situ
observations.

c. Previous research into UHI

This section of the article is a standard review of the
literature on the subject, which has been extensively stud-
ied, but with a distinct purpose. The focus will not only
briefly describe the results of previous research on the
subject of UHI contamination of in situ observations, but
will also focus on how the authors dealt with the con-
founding influences of data inhomogeneity. Literature
that reports on remote sensing data analyses (e.g., Akbari
et al. 1999) or urban transects (e.g., Melhuish and Pedder
1998) that do not measure the temperature at in situ
weather observing sites will not be evaluated. Satellite
observations of very warm rooftops or highway inter-
sections are likely accurate measurements of these parts
of the UHI but are unlikely to accurately indicate the
magnitude of the UHI effect at meteorological observing
stations. As urban heat island literature is an extensive
body of work, to limit the review, it starts in 1980.

An analysis of the Minneapolis–St. Paul urban heat
island was made by Winkler et al. (1981) using both
unadjusted and adjusted data. They report that the mean
annual urban–rural difference was 0.58C with unad-
justed data and 1.08C based on adjusted data. The au-
thors used the mean of 10 yr of data from 21 stations
in an ;18 000-km2 area and then analyzed them spa-
tially. The data were adjusted for time of observation
biases and the effect of latitude. Stations that moved
during this period had their time series adjusted for the
effect of the move, but no adjustments were made to
make the 21 stations homogeneous with respect to the
effect of elevation. And no efforts were made to account
for the effect of differences in instrumentation or rooftop
siting. Contours of mean temperature were drawn on a
map. The rural/urban classifications were then made
based on analysis of the temperature, with stations outside
the closed contours around the city classified as rural.

Cayan and Douglas (1984) found urban-affected heat
island temperature increases of 18–28C common when
comparing linear trends over three to five decades of
urban stations with trends at nonurban sites, 700-hPa
radiosonde-derived temperatures, and sea surface tem-
peratures. The authors made an attempt to identify sta-
tion moves, but no effort was made to account for in-
homogeneities in the data. In fact, the authors admit that
they used data from two stations despite the fact that
they ‘‘experienced rather severe changes in location’’
(Cayan and Douglas 1984).

One study acknowledged that ‘‘the large differences
of our individual station pairs demonstrate that isolation
of the urban warming effect from other inhomogeneities
is a complicated task’’ (Kukla et al. 1986). They looked
at the difference in trends between rural and urban data
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over a 40-yr period for 34 station pairs and concluded
that the urban contamination amounted to about 0.128C
decade21. In their analysis, Kukla et al. (1986) adjusted
the data to address the biases caused by changes in the
time of observation and one part of their analysis care-
fully isolated subsections of the record of eight station
pairs to eliminate the effect of changes in instrument
locations. However, no effort was made to account for
changes in the instrumentation itself.

Two different approaches were used by Karl et al.
(1988) in an attempt to determine the effect of urban-
ization on the U.S. climate record. One approach, the
time rate of change method, looked at differences in
temperature time series between urban and rural. The
results of this method indicated that the warming rate
of maximum temperature was inconsistent from time
period to time period, that the approach was vulnerable
to imperfect adjustments, and that it was adversely im-
pacted by undocumented local changes in the landscape.
Therefore, the authors preferred an approach that ana-
lyzed mean urban–rural differences for two 9-yr periods
of urban–rural pairs. These data were then regressed
against the metropolitan population to the 0.45 power
[many different options were tested with (population)0.45

having the best fit]. Average annual temperature was
found to be 0.118C warmer in cities of 10 000 people,
0.328C warmer in a 100 000 population city, and 0.918C
warmer in a 1 000 000 population city. All of the warm-
ing in average temperature comes from minimum tem-
perature as their annual assessment of daily maximum
temperature indicates that urban sites tend to be cooler
than rural during the warmest part of the day. The time
series analyses had adjustments for changes in station
location, time of observation, and instrumentation re-
ported in the metadata. The spatial analysis had ho-
mogeneity adjustments for elevation, time of observa-
tion, and latitude but not for instrumentation or non-
standard siting. More discussion about these results is
in section 5c.

Jones et al. (1990) determined that the impact of ur-
banization on hemispheric temperature time series was,
at most, 0.058C century21. This result was based on the
work of Karl et al. (1988) for the United States and further
analysis of three other regions: European parts of the
Soviet Union, eastern Australia, and eastern China. ‘‘In
none of these three regions was there any indication of
significant urban influence in either of the two gridded
time series relative to the rural series’’ (Jones et al. 1990).
The homogeneity assessments varied with regions. The
data for one region ‘‘were assessed for artifacts due to
factors such as site moves or changing methods used to
calculate monthly mean temperatures.’’ Another region
used data from stations ‘‘with few, if any, changes in
instrumentation, location or observation times.’’ The ho-
mogeneity of data used in the third region was not dis-
cussed. Their results showed that the urbanization influ-
ence ‘‘is, at most, an order of magnitude less than the
warming seen on a century scale.’’

Nasrallah et al. (1990) used data from four stations
to examine Kuwait City’s urban heat island. Their anal-
ysis revealed a lack of well-developed heat island with
no statistically significant temporal trends in the differ-
ences in minimum temperatures between desert and ur-
banized locations. No homogeneity issues were ad-
dressed for this analysis.

Using 42 pairs of urban–rural stations in China, Wang
et al. (1990) found an average urban heat island of
0.238C ‘‘despite the fact that the rural stations were not
true rural stations.’’ ‘‘Multiple regression techniques’’
were used ‘‘to minimize the effects of differences in
altitude, latitude and longitude.’’ No details or addi-
tional information were provided on this or any other
aspect of homogeneity.

Gallo et al. (1993) looked at clusters of stations and
compared the relationship between the difference in ru-
ral and urban temperatures and a vegetation index. Most
but not all of their rural–urban differences showed urban
stations as warmer. Elevation effects were addressed by
running a second analysis limited to ‘‘only those cities
with weather stations that exhibited less than 500-m
elevation differences.’’ Latitude and time of observation
effects were not addressed. They acknowledge that roof-
top observations were included in their analysis. Also,
they cite a different paper indicating that one type of
thermometer used in their study averaged 0.38C warmer
during the summer months than others, yet they made
no adjustments for instrumentation.

China’s northern plains were the subject of a UHI
analysis by Portman (1993). Using data from 1954 to
1983 and examining how the differences of residuals
between each urban station and every rural station
changed, the author determined that the mean annual
urban warm bias increased 0.198C during these 30 yr.
Homogeneity issues were addressed by statistically
comparing time series of all the stations and removing
stations with ‘‘large potential discontinuities’’ from the
analysis. However, this region has warmed during this
period (Wang and Gaffen 2001) and no effort was made
to address the potential trend-damping influence that
proximity to a large body of water might provide. This
could be a confounding factor as analysis of a map in
Portman (1993) revealed that 38% of the rural stations
were within 15 km of the Yellow Sea and 63% within
50 km, while only 19% and 29%, respectively, of the
urban stations were that close.

An analysis of the Barcelona heat island is presented
in Moreno-Garcia (1994). In addition to transects, the
author examined data from two stations. On an annually
averaged basis, the urban site was 0.28C cooler for daily
maximum temperatures and 2.98C warmer on minimum
temperatures. It was noted that the two stations had the
same instrumentation, similar elevations, and ‘‘similar’’
distances from the sea (the map indicated ;0.6 km for
the urban and ;1.8 km for the rural).

The San Antonio, Texas, heat island was assessed by
Boice et al. (1996) using 45 yr of data from one San
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Antonio station and three stations from surrounding
small towns. The results indicate that San Antonio’s
minimum temperature increased at an average rate of
0.38C relative to the other stations. No effort was made
to assess the homogeneity of the data.

Todhunter (1996) determined that the Minneapolis–
St. Paul mean urban heat island in 1989 was 2.18C. This
value was determined based on data from one station
at the local National Weather Service (NWS) forecast
office, one university station, 11 NWS cooperative net-
work stations, and 13 weather stations organized by a
local television station. In order to make the UHI anal-
ysis, the author developed ‘‘a high-density, homoge-
neous, daily maximum and minimum air temperature
dataset’’ (Todhunter 1996). This ‘‘homogeneous’’ da-
taset was created using only homogeneity adjustments
for the time of observation biases. No adjustments were
made for latitude. No effort was made to account for
the effect of differences in elevation apparently ‘‘be-
cause of its modest local relief (,90 m),’’ although
information from a table in Todhunter (1996) indicates
that the greatest difference in elevation between two
stations was 119 m. And despite using data from several
different sources, no adjustments were made to account
for the effects of differences in instrumentation or non-
standard siting.

Using data from three different parts of the world,
Camilloni and Barros (1997) determined that the urban–
rural temperature difference decreases during periods
when rural temperatures are increasing and increases
when rural temperatures are decreasing. Some of the
data they used had been adjusted for all known inho-
mogeneities and some of their data had no homogeneity
assessments or adjustments.

Böhm (1998) used data from three urban, three sub-
urban, and three rural stations to examine the Vienna,
Austria, urban heat island. He found that the urban effect
is strongly influenced by local surroundings and there-
fore could not be regarded for the city as a whole, with
the magnitude varying from 0.28 to 1.68C. The trend in
urban warming varied as well, with two central city
stations showing no increase in urban warming while
the third had 0.68C warming in 45 yr. In Vienna, the
average urban heat island effect was found to be stron-
gest in winter. The data were rigorously tested for in-
homogeneities from a time series perspective and the
data for all nine stations were adjusted to a constant
elevation. No comment was made as to whether the
instruments and shelters were the same for all stations
or not.

Data from two stations were used by Magee et al.
(1999) to determine that the effect of the Fairbanks,
Alaska, urban heat island grew by 0.48C over a 49-yr
period, with winter months experiencing a more sig-
nificant increase of 1.08C. Nothing was done to the data
to account for any potential inhomogeneities, though
the authors did document that the Fairbanks station

moved twice and used three different types of ther-
mometers during this period.

An analysis of surface air temperature compared to
0.91-m-deep soil temperature indicated an urban heat is-
land increase of 0.28C over the period 1889–1952 for
Urbana–Champaign, Illinois (Changnon 1999). The land
air temperatures were adjusted for all temporal inho-
mogeneities in the station history archives. The soil tem-
perature record ‘‘is considered an unbiased measure of
the natural temperature trend in this region.’’ Implicit in
this assumption is that soil temperature records are not
biased by long-term changes in factors other than tem-
perature, such as snow cover. However, an increase in
winter snow cover can cause markedly warmer soil tem-
peratures even during colder than normal winters
(DeGaetano et al. 1996). Therefore, if snow cover de-
creased during this period, which is likely considering
that the temperature has warmed and the amount of snow-
fall reported by the Urbana station was about 20% less
in the latter part of the study period than the earlier part,
soil temperature time series would likely have a cold bias.

Gallo and Owen (1999) identified clusters of stations
in the contiguous United States and compared the re-
lationship between the difference in rural and urban tem-
peratures and a vegetation index. They found seasonal
changes in the urban–rural differences that tracked
changes in the vegetation index. Most, but not all, of
their rural–urban differences showed urban stations as
warmer with urban stations averaging 0.388C warmer
than rural. The effects of elevation were addressed by
requiring the difference between lowest and highest sta-
tions in each cluster to be less than 500 m. Latitude,
time of observation, differences in instrumentation, and
siting were not addressed.

Two different approaches were used to examine the
urban heat island of Lodz, Poland (Klysik and Fortuniak
1999). The approach that used in situ stations compared
three years of early 1990s data between an airport station
and a station located in a big downtown square as well
as three years of data during the 1930s between the
airport station and a meteorological station operating in
the city center at the edge of a small park. The results
indicate ‘‘that the UHI intensity reached fairly similar
dimensions’’ in the 1930s, when the built-up area of the
town was four times less, as in the 1990s. No homo-
geneity adjustments were made to the data.

One city, Tucson, Arizona, was the subject of several
different analyses by Comrie (2000), including transects
by vehicle-mounted thermistors, spatial examination of
in situ data, and comparison of rural and urban temper-
ature time series. The results indicated that Tucson’s ur-
ban heat island warming was ;38C over the last century
and .28C of this occurred in the last 30 yr. No homo-
geneity assessments or adjustments were made and Com-
rie (2000) did not reference Gall et al. (1992), which
looked at then-current measurements at the National
Weather Service Office in Tucson and found ‘‘daytime
temperatures that are two to three degrees too high.’’
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Using 20 yr of data from one urban station and three
rural airport stations, Morris et al. (2001) determined
that Melbourne’s nocturnal urban heat island was
1.138C. Potential time of observation differences were
addressed by only using the 0600 LT observations and
the effects of differences in elevation were not addressed
because the mean rural–urban elevation difference was
only 20.7 m. There was no discussion about other po-
tential homogeneity issues such as instrumentation.

One rural and one urban station were used by Kim and
Baik (2002) to determine that Seoul warmed 0.568C rel-
ative to its rural neighbor during the 24-yr period 1973–
96. The authors showed time series of Seoul and five
neighboring stations but made the comparison only to
the one neighbor that had the least warming during this
period because it had ‘‘the largest temperature difference
between Seoul and any rural observatories.’’ There was
no discussion or assessment of data homogeneity.

Kalnay and Cai (2003) compared data from 775 urban
contiguous U.S. (CONUS) stations with 167 rural sta-
tions and found that the urban warmed 0.188C more
than the rural during the 1980s and 1990s. In situ data
homogeneity was not addressed at all.

d. The approach used in this analysis

The main insight from the literature review is that
most assessments of urban heat island contamination do
not rigorously deal with potential inhomogeneities in
the data. When inhomogeneities have not been fully
dealt with, it is impossible to have confidence that the
analyses correctly determined the impact of urbanization
on the temperature record. However, when adjusting
long time series for inhomogeneities due to factors such
as station moves and changes in observing practices,
the effect of urbanization may be inadvertently com-
pensated for as well. Thus, it is doubtful that these two
intertwined issues can ever be 100% successfully sep-
arated. The work presented here, therefore, will not look
at differences in trends. Instead, the approach used will
evaluate the effect of urban warming in a subset of the
U.S. network by comparing temperatures of nearby rural
and urban stations.

‘‘Unquestionably, many towns and cities are so lo-
cated that even if we eliminated the man-made features,
a microclimatic gradient would still exist between the
city and the airport. Differences in elevation, river val-
leys, and proximity to lake and sea shores or mountains
would introduce many well-known temperature differ-
ences, inversions, and local wind flow patterns’’ (Lands-
berg 1970). However, one can adjust the data to account
for some natural and most artificial inhomogeneities.
Specifically, careful attention will be paid to adjusting
the data to account for the natural effects due to dif-
ferences in elevation and latitude as well as the artificial
effects due to differences in time of observations, dif-
ferences in instrumentation, and the effects of non-stan-
dard siting practices, namely, rooftop installations. Once

the data are adjusted for these factors, it will be possible
to accurately assess the impact of urbanization on the
climate record.

2. Data and rural/urban metadata

Quality-controlled mean monthly temperature data
for U.S. in situ stations were obtained from the National
Oceanic and Atmospheric Administration/National En-
vironmental Satellite, Data, and Information Service/
National Climatic Data Center (NOAA/NESDIS/
NCDC) archives. The analysis period selected was the
same one used by Gallo and Owen (1999), the three
years 1989–91. Ending the period in December 1991
allowed the analysis to avoid the confounding influence
of the Automated Surface Observing System (ASOS)
deployment, which started in 1992. Three years is long
enough to produce robust means. A longer period would
increase the problem of missing data.

Due to the innate variability in climate, it was im-
portant not to bias the analysis with incomplete data.
For example, if a station was missing an unusually warm
or cold month, the average for the three years could be
inappropriately cold or warm. Therefore, the first cri-
terion was that the station have complete data for the
analysis period.

Satellite night-light data are the latest tool used for
determining which stations are rural and which are ur-
ban. For example, while Hansen et al. (1999) use map-
derived rural/urban metadata in their global temperature
analyses, Hansen et al. (2001) moved up to satellite-
derived night-lights rural/urban metadata. The rural/ur-
ban classification metadata used in the analysis pre-
sented here was developed by Owen et al. (1998) using
night-light data from the Defense Meteorological Sat-
ellite Program-Operational Linescan System. Their
methodology divided 1-km2 grid boxes throughout the
United States into urban, suburban, and rural classifi-
cations. Figure 1 shows how their metadata compare
with other approaches. Advantages of the Owen et al.
metadata include that they are objective (while map
based is often subjective) and that night-lights, in the
United States at least, are good indicators of urbani-
zation whether residential or industrial. Owen’s et al.’s
urban grid boxes had an 84.4% agreement with data
from the U.S. Bureau of the Census (1997).

These metadata were available for the station loca-
tions that went into the analysis of Gallo and Owen
(1999). The stations consisted of 40 clusters of stations
well distributed around the country with a total of 289
stations (see Fig. 2). The Owen et al. (1998) method-
ology classified 85 of these stations as rural, 191 as
urban, and 13 as suburban. A significant percentage of
these stations required careful assessment of the hard-
copy station history metadata to determine their true
instrumentation and siting characteristics. For example,
digital metadata often listed instrument type as unknown
or would list many stations as rooftop observations
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FIG. 1. Rural and urban stations identified by three techniques: (a) the night lights–derived metadata used in this analysis; (b) based on
U.S. Census Bureau data; and (c) rural/urban metadata derived from maps. Figure from Owen et al. (1998).

FIG. 2. Locations of stations and clusters used in the analysis.

while careful analysis of the full station history archive
revealed that the rooftop installation was only for the
back-up instrumentation. Therefore, 289 was a reason-
able number of stations to evaluate.

3. Methods

There are two parts to this analysis. The first part
applies adjustments to the data to account for all five

of the different bias-inducing factors impacting analyses
of the data: elevation, latitude, time of observation, in-
strumentation, and nonstandard siting. The adjustment
approaches used methodologies similar to those widely
applied to time series (Peterson et al. 1998). The second
part evaluates the impact of the UHI on in situ tem-
perature observations and whether each adjustment has
a statistically significant impact on the assessment. Be-
cause there are numerous inhomogeneities to address
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TABLE 1. Evaluation of elevation adjustment. Results of analysis dividing each cluster into two groups depending on whether the station
elevation was above (high elevation) or below (low elevation) the mean elevation for the cluster are presented. The temperature difference
is mean annual temperature for low-elevation stations minus high-elevation stations. There are fewer stations above the mean (89) than
below it (114), indicating that lower-elevation stations tend to be closer in elevation than the high-elevation stations. Since the effect of,
e.g., the time of observation could bias the results, values are provided for the original data, for data after all the other homogeneity
adjustments except elevation have been applied, and for fully adjusted data, which includes the elevation adjustment. An MRPP (Mielke
1991) was used to determine the probability that, given all of the data points, two groups more different could occur by random chance
alone. Values with probabilities less than 10% are given in bold and less than 5% are bold*. This analysis used data from 36 clusters.

Original
(8C)

All adjustments
except elevation

(8C)
Full adjusted

(8C)

Mean temperature difference 1.13* 1.12* 0.10

TABLE 2. Evaluation of latitude (lat) adjustment. Results of analysis dividing each cluster into two groups, depending on whether the
station lat was above or below the mean lat, for the cluster are presented. The temperature difference is the mean annual temperature of the
southern stations minus the northern stations. This analysis involved data from 36 clusters with 94 stations in the southern half and 110
stations in the northern sections. Bold type has same meanings as in Table 1.

Original
(8C)

All adjustments
except latitude

(8C)
Fully adjusted

(8C)

Mean temperature difference 0.72* 0.43* 0.05

and because part of the purpose of this paper is to eval-
uate their importance, the adjustments are discussed in
detail.

a. Elevation

Most U.S. cities are located on coasts (e.g., Boston,
Seattle), lakes (e.g., Milwaukee, Salt Lake City), or riv-
ers (e.g., Cincinnati, Waterloo) and therefore tend to be
at lower elevations than nearby rural stations (though
exceptions, such as Flagstaff, Arizona, do exist). There-
fore, rural stations in this analysis, not unexpectedly,
tend to be at higher elevations than nearby urban sta-
tions, but only 20 m higher on average. However, the
average is only a small part of the problem as some
stations can be significantly higher or lower than the
average for the group. The adjustment values for the
effect of elevation on temperature, 25.38C km21 of el-
evation, were taken from Landsberg (1945). Local ter-
rain features that can impact the effect of nocturnal
drainage flow influences on minimum temperature could
not be addressed by this adjustment. As Table 1 indi-
cates, this elevation adjustment removes the majority of
the bias that elevation has on the mean annual temper-
ature at the stations.

b. Latitude

Perhaps the most dominant feature of the temperature
in the United States is that it varies with latitude. The
effects of latitude need to be taken into consideration
because a single cluster can span as much as 0.978 of
latitude, though, on average, rural stations were only
slightly farther south than urban (0.028).

To determine the magnitude of this gradient, 1989–

91 average temperature were calculated at all U.S. co-
operative stations. The United States was then divided
into 28 latitude by 18 longitude grid boxes. Station lat-
itudes and temperatures were converted to anomalies
from the means of all the stations in their grid boxes.
A linear regression on all of these annual mean tem-
perature anomaly data points provided the adjustment
factor of 20.908C per degree of latitude.

Table 2 indicates that this approach removes almost
all of the bias that differences in latitude imparts. Un-
fortunately, the gradients of temperature are not uniform
around the country, so it can not be completely accurate
at each cluster. Interestingly, in Table 2, there is a de-
crease in the north–south (N–S) bias when adjustments
for other factors are applied. It turns out that the ele-
vation factor was aliased to N–S, as the average ele-
vation of the more northerly half of the stations was
significantly higher than the southern half.

c. Time of observation bias

The time that an observer reads and resets maximum
and minimum thermometers can cause biases as high as
28C in monthly temperatures (Karl et al. 1986). Using
hourly station data, Karl et al. (1986) developed a model
to account for time of observation (TOB) bias. The mod-
el adjusts all observations to be equivalent to midnight
readings. As one would expect, these adjustments are
regionally and seasonally varying. The percentage of
stations reading in the afternoon is about the same for
rural (33%) as urban (35%). However, rural stations
have a higher percentage of a.m. readers (53% versus
37%) and a lower percentage of midnight readers (14%
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TABLE 3. Assessment of time of observation adjustments. Results of analysis of mean annual temperature of morning reading stations
minus the rest of the stations and afternoon reading stations minus the rest of the stations. No adjustments were made in the data used in
‘‘unadj analysis,’’ all of the data in ‘‘adj except TOB’’ analysis has all the adjustments except TOB; and ‘‘fully adjusted’’ uses only data
with all of the adjustments. Also shown are the number of station clusters used, the number of stations in the first category listed in column
one, and then the number of stations in the second category that went into the analysis. Note that unadjusted A.M. (P.M.) readers have a cold
(warm) bias as expected. Bold type has same meanings as in Table 1.

Unadj
(8C)

Adj except TOB
(8C)

Fully adjusted
(8C) Number of groups

Number of
stations in

first category

Number of
stations in

second category

A.M.-rest
P.M.-rest

20.70*
0.46*

20.49*
0.57*

20.11
20.03

30
30

85
67

98
113

versus 27%) than urban stations. This difference in ob-
servation times would add a cold bias to rural data.

TOB adjustments can be quite large, so using an in-
correct time of observation can create some significant
outliers in the adjusted data. Applying TOB adjustments
using existing electronic NCDC metadata did, in fact,
produce some significant outliers. Therefore, rather than
rely on incomplete or occasionally erroneous station his-
tory metadata, the time of observation metadata used
in these adjustments were derived from analysis of the
daily data using the methodology described in De-
Gaetano (2000).

Evaluations of the TOB adjustments are shown in
Table 3. As expected, in the raw data and the data with
all adjustments except TOB, morning observers have
significant cold biases and afternoon observers have sig-
nificant warm biases. After the adjustments, some bias
still remained but they were no longer significant at the
90% level.

d. Instrumentation

Different instruments have significantly different bi-
ases. The effectiveness of the solar radiation shield
varies with the type of shield, with the cotton region
shelter (CRS) being more effective at shielding out solar
radiation than the maximum–minimum temperature sys-
tem (MMTS) shield (Hubbard et al. 2001). Also, the
airflow characteristics for the different shields also vary
with shield design, with the MMTS design having high-
er airflow efficiency than the CRS (Lin et al. 2001a).

The data from the 289 stations used in this analysis
come from a variety of instrumentation: 106.9 liquid-
in-glass (LiG) maximum and minimum thermometers
in CRS, 142.8 thermistor-based MMTSs, 35.0 hygro-
thermometers, 2.3 hygrothermographs, and 2.0 ‘‘other.’’
The fractional instrumentation numbers are due to in-
struments changing during the 1989–91 period and one
station used MMTS during the week and a hygrother-
mograph on weekends. Rural and urban stations had
about the same percentage of LiG/CRS (35.5% rural,
36.0% urban). Rural had a higher percentage of MMTS
(55.1% versus 49.7%), hygrothermographs (1.2% ver-
sus 0.6%) and ‘‘other’’ (1.2% versus 0%), while urban
stations had the highest percentage of hygrothermom-
eters (13.6% versus 7.1% for rural). Biases produced

by these different methods in observing temperature
would impact any rural/urban analysis.

1) HYGROTHERMOMETERS

The hygrothermometer in use during this period was
the HO-83, which has been the focus of several inves-
tigations. In Albany, New York, a ‘‘warm bias, amount-
ing to as much as 18–28C, could be identified in all
seasons’’ in the HO-83 data (Kessler et al. 1993). While
the HO-83 has a small aspirated shield (see Fig. 3a),
Gall et al.’s (1992) examination of the HO-83’s warm
bias in Tucson, Arizona, found that ‘‘the ventilation rate
of its aspiration system at the entrance aperture of the
housing . . . was observed to be in the range of 0.1 to
0.2 m s21, about a factor of 5 less than other temperature
sensors with housings of similar design.’’ They also
noted that the ‘‘HO-83 contains a Peltier cooled dew-
point system, which also emits heat within the cylinder
containing the temperature sensor.’’ Once these defi-
ciencies in the instrumentation were noted, the NWS
moved quickly to improve the ventilation of the HO-
83. Therefore, any study relevant to the data from 1989
to 1991 needs to have used data from the HO-83 prior
to any modification.

The data Jones and Young (1995) used were collected
starting in October 1991 from 15 side-by-side HO-83
and the new ASOS thermometer and continued until
December 1992. They report that some changes were
made during this time to the HO-83 but they were minor.
These data did not include maximum and minimum tem-
perature but instead compared hourly observations.
However, C. Jones (2000, personal communication) re-
processed the data with extreme daily maximum and
minimum hourly temperatures as surrogates for maxi-
mum and minimum temperature. The mean temperature
adjustment is the average of the maximum and minimum
since mean temperature in the U.S. cooperative network
is the average of the maximum and minimum daily tem-
perature. The annual mean temperature adjustment that
results from this methodology, 20.628C, is in keeping
with the ‘‘approximately 0.68C warmer’’ value deter-
mined by Jones and Young (1995). This value is added
to the data from the HO-83 to make them comparable
to the ASOS instrument. This adjustment to the ASOS
standard essentially removes the HO-83 bias because
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FIG. 3. (a) The HO-83 housing includes a small fan. (b) The painted
wood CRS houses liquid-in-glass thermometers. (c) MMTS on a pole;
this unaspirated plastic shield is 24 cm tall. Photos courtesy of the
NWS.



2950 VOLUME 16J O U R N A L O F C L I M A T E

when McKee et al. (1997) took ‘‘a field standard tem-
perature system to three ASOS instruments for a side-
by-side comparison’’ they determined that ‘‘ASOS has
no temperature bias.’’

2) LIQUID-IN-GLASS THERMOMETERS

CRSs are the old traditional white-slatted wooden in-
strument shelters (see Fig. 3b) that house LiG ther-
mometers. The mean bias caused by stations changing
from LiG thermometers in CRS to MMTS has been
documented by Quayle et al. (1991) using data from
424 MMTSs and 675 CRSs that had no changes in ob-
servation times. This is by far the largest study of the
difference between these two observing systems. While
the introduction of the MMTS caused a significant de-
crease in maximum temperatures and increase in min-
imum temperatures, its effects on mean temperatures
was small with the MMTS mean annual temperatures
found to be only 0.068C cooler than LiG in CRS. Quayle
et al. (1991) combined data from all parts of the con-
tiguous United States even though there are certainly
regional differences due to regional variation in the
strength of nocturnal longwave radiational cooling, the
strength of incoming solar radiation, and the solar ra-
diation angle, all of which can impact the observed tem-
peratures inside the shelters (Lin et al. 2001b). Two side-
by-side comparisons of individual MMTS and LiG ther-
mometers in Minnesota and New Jersey indicated sim-
ilar results (Baker and Ruschy 1989; Croft and Robinson
1993). However, one side-by-side comparison of an
MMTS to two LiG thermometers in Illinois reported
similar changes in maximum temperature but very little
differences in minimum temperature (Wendland and
Armstrong 1993). The Quayle et al. (1991) adjustments
were applied to the liquid-in-glass temperature data to
make them compatible with MMTS data.

3) HYGROTHERMOGRAPHS

Hygrothermographs are another type of thermometer
that are housed in cotton region shelters. These instru-
ments are calibrated with LiG thermometers and there-
fore should have the same biases that LiGs in CRSs
have. The Quayle et al. (1991) bias adjustments were
therefore applied to hygrothermograph data as well to
make them comparable to MMTS.

4) MAXIMUM–MINIMUM TEMPERATURE SYSTEMS

The MMTS has an electronic thermistor inside a small
unaspirated housing (see Fig. 3c). While several studies
compared the MMTS to the CRS, no studies could be
located that compared the MMTS in the field to the
ASOS instrument or a field standard. Since the MMTS
and CRS can be adjusted to make their data equivalent,
which instrument is closest to having no bias? When
that question was posed to M. Sturgeon (2001, personal

communication) of the NWS Sterling Test Facility, he
indicated that, in his opinion, the MMTS was more pre-
cise. This sentiment was also echoed by Quayle et al.
(1991). Part of the difference between CRS and MMTS
‘‘is most likely due to the tendency for the CRS to
overheat during sunny, quiet weather’’ (Chenoweth
1993). The MMTS does not have that problem as much
because the ‘‘ventilation of the MMTS shelter is better
than that of the CRS’’ (Wendland and Armstrong 1993).
Quayle et al. (1991) suggest two possible causes for the
CRS having lower minimum temperatures. The first is
that column separation in the LiG maximum thermom-
eter (which sometimes occurs near the constriction in
the bore that prevents the mercury from re-entering the
bulb when the temperature begins to drop) causes er-
roneous high readings. The second is radiation loss to
the cool ground at night from the CRS through its single
slatted bottom (the MMTS has a double bottom). The
implication clearly is that the MMTS is likely to have
less bias. Therefore, the differences between MMTS and
LiG in CRS were applied to LiG in CRS data to make
them comparable to MMTS. No adjustments could be
identified that would make the MMTS more similar to
ASOS.

The final step in the instrumentation adjustments was
to remove data from the two nonstandard instrument
stations from the analysis. Table 4 shows how well the
instrumental biases were removed. The biggest impact
was the change in HO-83. It was reading 0.78C warmer
than the other stations and that has been cut to 0.148C.
The bias for the LiG in the CRS went from a very small
bias in the original data to a fairly high but statistically
insignificant 0.28C. The MMTS bias was cut from read-
ing 0.448 too cool to 0.248C too cool but still has a
statistically significant bias. However, since the MMTS
temperatures were not adjusted, the change in its bias
was probably due to the large HO-83 adjustment and
the small CRS adjustment. When comparing LiG in CRS
directly with MMTS it was found that after all the ad-
justments there is still a significant difference, with the
MMTS data being 0.278C cooler than the LiG.

The adjustments that Quayle et al. (1991) identified
are based on nationally averaged data. However, if the
differences are largely due to the effect of radiation,
there should be significant regional variations in this
adjustment. It is possible that this regional variation is
a cause for the residual MMTS/LiG bias. It is also pos-
sible that the bias is related to changes to the instrument
over time as the Quayle et al. (1991) assessment ex-
amined the effect of installing new MMTS.

The warm residual bias in hygrothermometers could
be removed by simply adding the residual bias to the
adjustment. However, since hygrothermometers are
twice as likely to be in urban locations, such manipu-
lation of the adjustments may inappropriately remove
the UHI signal that one is trying to identify. Therefore,
these imperfect adjustments are the best possible based
on the available information. Fortunately, a bias in the
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TABLE 4. Assessment of instrument adjustments. Results of analyses of mean annual temperature of different categories based on the
stations’ instrumentation are presented. No adjustments were made to data used in the ‘‘unadj analysis,’’ all of the data in ‘‘adj except
instrument’’ analysis has all the adjustments except instrumentation; and ‘‘fully adjusted’’ uses only data with all of the adjustments. In the
unadjusted data, HO-83 hygrothermometers had a warm bias during this period as expected. Bold type has same meanings as in Table 1.

Unadj
(8C)

Adj except
instrument

(8C)
Fully adjusted

(8C) Number of groups

Number of
stations in

first category

Number of
stations in

second category

HO-83-rest 0.70* 0.71* 0.14 26 29 117
LiG in

CRS-rest 20.02 0.10 0.20 28 70 102
MMTS-rest 20.32* 20.44* 20.24* 31 97 90
LiG in

CRS–MMTS 20.23 20.32* 20.27* 25 78 63
Lig in

CRS–HO-83 20.85* 20.60* 20.05 20 50 23
MMTS–HO-83 20.83* 20.68* 20.24* 23 67 26

LiG in CRS observations should not dramatically im-
pact UHI analysis, as the percentage of stations with
LiG in CRS is approximately the same for rural and
urban classifications (35.5% versus 36.0%). The MMTS
differ more (55.1% for rural, 49.7% for urban) but are
still fairly similar.

e. Siting

Microscale siting characteristics can produce biases
in the temperature measurements. Assessing these char-
acteristics can be both extremely difficult, given the
level of available metadata, and is part of the essential
rural/urban question this analysis seeks to address. How-
ever, one siting characteristic that is not part of the rural/
urban question and that can impart a large bias is non-
standard siting, particularly rooftop observations. Roof-
top observations tend to be warmer at night due to being
higher in the stably stratified nocturnal boundary layer
and warmer during the day due to less thermal mass
below them being warmed by the sun and less available
water to be converted into latent heat.

This problem has been known for decades. Indeed,
Landsberg (1942) states that the differences between
rooftop and ground-based observations ‘‘indicates clear-
ly that conclusions on climate derived from records of
roof stations may by no means be representative of those
at the ground level . . . Stations located at roof level and
on tall buildings have been used in the past. Most of
their observations are hard to interpret . . . They are
certainly of little value in a full assessment of the cli-
matic changes brought about by urbanization’’ (Lands-
berg 1970). In 1994 R. Leffler (2002, personal com-
munication) of the NWS documented one example of
the rooftop bias by installing a new station on the ground
within a few hundred meters of the rooftop station that
he intended to close. Both the new and the old station
were definitely urban stations located near the center of
Baltimore. During this overlap period, the rooftop sta-
tion had 13 days above 1008F (37.88C) and 81 days
above 908F (32.28C) while the nearby ground station
had no days above 1008 and only 38 days above 908F.

The Baltimore–Washington International airport also re-
ported 38 days above 908 and no days above 1008F
during this period. For minimum temperatures, the roof-
top station reported 12 minimum temperatures above
808F (26.78C) while the nearby ground-level station and
the airport reported no minimums above 808F. Parallel
observations like these during site moves are the ex-
ception rather than the rule. Leffler’s addressing the ef-
fects of site changes before the move was made resulted
in some valuable site-specific information.

The results of the Davey et al. (2002) analysis of
rooftop stations indicated that rooftop sites are usually
warmer than nearby ground-based observations. Davey
et al. (2002) also concluded that, due to building and
site-specific features, no widely applicable formula to
adjust rooftop observations to be equivalent with surface
observations was able to be determined. Yet it is clearly
important to remove this source of bias from the data.
Fortunately, only 2 of the 289 stations had metadata
indicating nonstandard siting during this period, which
in both cases were rooftop locations. One was urban
and the other was classified as suburban. Data from
rooftop stations were removed from further analysis.

f. Analysis methodology

The first step in determining the difference between
rural and urban stations was to convert each station’s
original and adjusted temperatures to anomalies from
its respective cluster mean value. To have its data used
in the analysis, a cluster needed to have both rural and
urban stations with complete data. The station anomaly
data were then put into two groups depending on wheth-
er they were rural or urban. The null hypothesis that
these two groups were not significantly different was
tested using a multiresponse permutation test (MRPP;
Mielke 1991), which returned the probability that, given
all the data points, two groups more different could
occur only by random chance.
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FIG. 4. Rural and urban mean annual temperature anomalies relative
to each cluster’s mean temperature using original unadjusted data.
The box and whiskers used in this article indicate the median value
(centermost line), the 25th and 75th percentiles (edges of the box),
and extreme values (end of the whiskers).

TABLE 5. Impact of imhomogeneities on UHI assessment. Assess-
ment of mean annual UHI (urban minus rural temperatures) using
datasets with different homogeneity adjustments (adj.). Bold type has
same meanings as in Table 1.

Urban–rural (8C)

No adjustments
Fully adjusted data
All adj. except elevation
All adj. except latitude
All adj. except TOB
All adj. except instrumentation
Number of groups
Number of urban stations
Number of rural stations

0.31*
0.04
0.15

20.02
0.21*
0.09

31
116
66

4. Results

The box and whisker plot in Fig. 4 shows that for
mean annual unadjusted temperature anomalies, rural
temperatures tended to be cooler than the urban tem-
peratures. As indicated in Table 5, the mean urban minus

rural temperature difference was 0.318C and the differ-
ence between the two groups was significant at better
than the 5% level. But even with this significant dif-
ference between the urban and rural stations, exami-
nation of Fig. 4 reveals considerable variability in the
temperature anomalies, with some urban sites reporting
colder temperature anomalies than many rural stations.

Once the homogeneity adjustments were made (Fig.
5), the situation changes dramatically. Note that the
scale on Fig. 5 is less than that of Fig. 4. With the spread
from highest to lowest anomaly going from 10.48 to
5.28C with adjustments, it is clear that some of the var-
iability in a cluster was due to biases that the adjust-
ments removed. The mean difference between urban and
rural dropped to 0.048C and was not significant at the
90% level (Table 5). Therefore, inhomogeneities, which
had already been indicated as not being random with
regard to urban and rural stations, accounted for almost
all of the apparent urban heat island in the raw data.

To determine which inhomogeneities had the greatest
impact, the same analysis was run on data that were
adjusted for all but one source of bias (Table 5). The
magnitude of the urban minus rural difference listed in
Table 5, less the residual in the fully adjusted results,
indicates how much of a difference each source of in-
homogeneity made in assessment of urbanization. In
declining order, the time of observation accounted for
0.178C of the bias (as rural stations had a higher per-
centage of morning readers, which have a cold bias),
differences in elevation accounted for 0.118C (in keep-
ing with rural stations tending to be at higher elevations
than nearby urban stations), instrumentation 0.058C
(which is in keeping with urban stations having a higher
percentage of hygrothermometers that had a well-doc-
umented warm bias during this period), and latitude
turned out to be a negative 0.068C (meaning that the
differences in latitude actually made the perceived un-
adjusted urban heat island assessment less due to the
urban stations tending to be a little farther north than
the nearby rural stations).

Two tests were conducted to assess the robustness of
the analysis. The first addressed the homogeneity ad-
justments. The quality of the adjustments was assessed
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FIG. 5. Rural and urban mean annual temperature anomalies as in
Fig. 4, but for data that have been adjusted to account for the effects
of differences in elevation, latitude, time of observation, instrumen-
tation, and nonstandard siting. Note that Figs. 4 and 5 have different
scales.

in section 3, and residuals for each adjustment were
presented. Tweaking the adjustments to make all of the
residuals equal to zero and then readjusting the data
makes the small and insignificant difference between
urban and rural stations even smaller, thereby indicating

that the adjustments not removing 100% of the biases
did not significantly impact the results. The second test
was with the analysis approach. There are two possible
approaches for calculating the mean temperature at each
cluster: the mean of all the stations (presented earlier)
and one-half the mean of the urban stations plus one-
half the mean of the rural stations. Also, there are two
ways to evaluate the differences between rural and urban
stations: treat each station individually (presented ear-
lier) or address only the mean rural temperature and the
mean urban temperature at each cluster. These different
approaches required four different analyses. The results
of all four analyses agreed that the difference between
rural and urban stations was small (0.018–0.068C) and
very insignificant (the probability that more dissimilar
groups could be caused by random chance alone varied
from 0.77 to 1.00).

Some of the largest cities in the United States were
not represented in the 40 clusters. Could the large cities
be showing urban warming while the smaller ones do
not? To answer that question, the mean urban minus
rural temperature difference was calculated for each
cluster. An assessment of five of the largest cities—
Boston, Massachusetts; Dallas, Texas; Detroit, Michi-
gan; Salt Lake City, Utah; and Seattle, Washington—
found that one (Detroit) did not have adequate rural and
urban data to be analyzed while all of the rest had ho-
mogeneity-adjusted urban temperatures that were cooler
than the homogeneity-adjusted temperatures of their ru-
ral neighbors.

Analyses were also performed separately on each of
the three years of data used in this study. As with the
3-yr results, the results for each year indicated a small
and statistically insignificant difference between rural
and urban temperatures. The variability in each year’s
data was quite similar to the variability of the 3-yr anal-
ysis shown in Fig. 5 in both the interquartile range
(96%–114%) and extreme values (98%–123%). This in-
dicates that the analysis is robust with respect to inter-
annual variability of weather and climate.

5. Discussion

a. Competing micro-, and local-, and mesoscale
influences

In a recent talk at the World Meteorological Orga-
nization, T. Oke (2001, personal communication) stated
that there has been considerable advancement in the
understanding of urban climatology in the last 15 years.
He went on to say that urban heat islands should be
considered on three different scales. First, there is the
mesoscale of the whole city. The second is the local
scale on the order of the size of a park. And the third
scale is the microscale of the garden and buildings near
the meteorological observing site. Of the three scales,
the microscale and local-scale effects generally are larg-
er than mesoscale effects.
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The reasons, in part, are because vegetation is re-
sponsible for distinct meteorological and climatic ef-
fects at all scales in the city (Oke 1989). ‘‘Research in
the past decade has demonstrated that cities are not the
‘deserts’ they were once thought to be. The urban forest,
together with other greenspace (some irrigated) and a
variety of smaller sources, provides a significant flux of
water and latent heat into the urban boundary layer’’
(Oke 1989).

Gallo et al. (1996) examined of the effect of land use/
land cover on observed diurnal temperature range and
the results support the notion that microscale influences
of land use/land cover are stronger than mesoscale. A
metadata survey provided land use information in three
radii: 100 m, 1 km, and 10 km. The analysis found that
the strongest effect of differences in land use/land cover
was for the 100-m radius. While the land use/land cover
effect ‘‘remains present even at 10,000 m,’’ this weaker
relationship may actually be an artifact of the 100-m
influence as, for example, the majority of sites with
farmland listed for the 10 000-m radius also have farm-
land listed as the land use/land cover for the 100-m
radius.

On the local scale, Böhm (1998) also found that, for
maximum temperatures, local factors such as the annual
leaf cycle in a city park can overwhelm other urban heat
factors and ‘‘create thereby a much higher degree of
thermal comfort right in the city center during summer.’’
Recent research by Spronken-Smith and Oke (1998)
also concluded that there was a marked park cool island
effect within the UHI. They report that under ideal con-
ditions the park cool island can be greater than 58C,
though in midlatitude cities they are typically 18–28C.
In the cities studied, the nocturnal cooling in parks is
often similar to that of rural areas. They reported that
the thermal influence of parks on air temperatures ap-
pears to be restricted to a distance of about one park
width.

The gradients of temperature within a city can be
quite steep. Examining UHI using a radiosonde mounted
to a car, Klysik and Fortuniak (1999) found ‘‘permanent
existence of heat cells’’ during the night in which ‘‘each
housing estate placed on the outskirts of the city dis-
tinguished itself very sharply from surroundings in
terms of its thermal structure. Open areas (gardens,
parks, railway yards) were then sharply separated re-
gions of cold air. Thermal contrast at the border between
the housing estates and the fields covered with snow
(horizontal gradients of temperature) reached several de-
grees centigrade per 100 m.’’

‘‘The well known change in air temperature at screen-
level . . . has a steep gradient at the edge of the city,
but the distribution is much flatter over most of the rest
of the urban area except for relatively ‘hot’ and ‘cool’
spots in particularly densely built-up (high rise, narrow
canyons) or open and/or vegetated (parks, vacant land)
areas, respectively. Again, one must remember that the
nature of the urban canopy layer climates is dominated

by the immediate surroundings, not distance from the
edge or the centre’’ (Oke 1998).

Figure 6 visually portrays the geographic nature of
the local effect within a mesoscale urban environment.
While just one snapshot in time—about 1100 local time
(LT) in August—the analysis shown in Fig. 6 provides
a very good qualitative representation of the scales de-
scribed by the research cited earlier. S. Stetson (2003,
personal communication) compared Figure 6, which he
created, to similar images from different seasons and
times and concluded that while the absolute tempera-
tures will vary from hour to hour, day to day, and season
to season, the spatial distribution of surface temperature
classes—the relative position of the hot and cold spots—
remains the same. Therefore, if a station is located with-
in a park, it would be expected to report cooler tem-
peratures than the industrial sections experience. But do
the urban meteorological observing stations tend to be
located in parks or gardens? The official National
Weather Service guidelines for nonairport stations state
that an observing shelter should be ‘‘no closer that four
times the height of any obstruction (tree, fence, building,
etc.)’’ and ‘‘it should be at least 100 feet from any paved
or concrete surface’’ (Observing Systems Branch 1989).
If a station meets these guidelines or even if any attempt
to come close to these guidelines was made, it is clear
that a station would be far more likely to be located in
a park cool island than an industrial hot spot.

Park cool islands are not the only potential mitigating
factor for in situ urban temperature observations.
Oceans and large lakes can have a significant influence
on the temperature of nearby land stations whether the
station is rural or urban. The stations used in this anal-
ysis that were within 2 km of the shore of a large body
of water disproportionally tended to be urban (5.8% of
urban were coastal versus 2.4% of rural).

Clouds can also have a great impact on the radiation
budget at the surface of the earth, both urban and rural.
However, an analysis of clouds in the Atlanta area found
‘‘that there always tend to be more clouds over the urban
area than over a ring of surrounding rural area’’ (Kidder
and Hafner 2001). The authors go on to say that ‘‘this
is consistent with the urban warming effect, which
would produce rising air and more clouds over the city
and subsidence and fewer clouds over the surrounding
area’’ and that the ‘‘clouds tend to counteract the warm-
ing effect of urbanization,’’ though only warming in the
maximum temperature. Therefore, the warm industrial
parts of town may, via cloud effects, contribute to fur-
ther cooling of park cool islands.

Another factor that can influence urban temperatures
is the ruralization of urban areas. The urbanization of
rural areas is widely recognized as new housing devel-
opments being built on farmland or forests. The new
subdevelopments will typically have hectares of asphalt
and rooftops exposed to the sun with young trees planted
in the yards. However, trees grow and eventually shade
some or all of the asphalt. If, from a meteorological
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FIG. 6. Temperature data derived from the Landsat thermal band from about 1100 LT in Aug are overlaid on a detailed base map of
Washington, D.C. Red, yellow, purple, and light blue illustrate temperature variations over the hottest surface areas. The National Mall’s
grass and trees appear in more natural colors. This figure illustrates the local-scale variability of the UHI and how the specific location of
a station within a city can greatly alter the UHI contamination of its temperature observations. Figure created by and provided courtesy of
S. Stetson, Global Environmental Management, Inc., and published in Tomerlin (1999).

standpoint, paving a street is urbanization, then trees
growing and increasingly shading the asphalt must be
ruralization. Some residential urban areas with mature
trees can look like a forest from the air.

One unequivocal feature of rural and urban temper-
atures (Figs. 4, 5) is that whether adjusted for biases or
not, there is considerable variability. In the adjusted data
the fairly large whiskers are probably due to the local-
and microscale impacts, which can easily cause a station
to be 18 or 28C warmer or colder than a neighboring
station, with neighboring often defined as several tens
of kilometers away. Site-specific impacts of nearby bod-
ies of water, differences in topography’s effect on noc-
turnal drainage flow, and exposure to the prevailing
wind can have a real and significant impact on a station’s
temperature observations that have nothing to do with
whether a station is urban or rural. Therefore, accurate

site-specific adjustments—which, unfortunately, may
not actually be possible—might be required to decrease
the noise for more precise quantification of the impact
of urbanization at each location. As examination of Figs.
4 and 5 indicates, site-specific local- and microscale
effects will make some urban stations genuinely warmer
than nearby rural stations and will also make some of
them colder. It is interesting to note, however, that in
the literature review, while there were many articles
reporting comparisons of two or three sites, none of
these articles reported urban sites as cooler than rural
despite most multistation assessments indicating loca-
tions where urban sites were cooler. Since it seems un-
likely that researchers just never happened to select two
stations to compare where urban sites were cooler, this
publication record would indicate a bias in the literature.

The bias is certainly not intentional but it impacts our
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perceptions of the urban heat island phenomena. The
cause of the bias may be that inhomogeneities are se-
lectively ignored. Whenever one is using inhomoge-
neous data, the results are always suspect. If data pro-
duce an unexpected result, such as an urban station be-
ing cooler than nearby rural stations, the homogeneity
of the data would probably be questioned, thereby dis-
couraging the article from being published. However, if
the results are what is expected, namely, that urban sta-
tions are warmer than rural, then, as section 1c indicates,
the potential effects of inhomogeneities and biases in
the data may not even come to mind, thereby allowing
these articles to be published.

While analyses of inhomogeneous data cannot ac-
curately assess the magnitude of urban heat islands,
there are other types of accurate measurements of the
real UHI phenomenon that also bias our expectations.
These are analyses of in situ transects of urban areas
and high-resolution IR satellite data. These data will
accurately reveal that major urban highway intersec-
tions, industrial areas, and rooftops are indeed hot. But
unless the meteorological station is located in an inter-
section, industrial area, or on a rooftop, the analyses
should not be used to guide our expectations of urban
biases at in situ observation sites.

b. Rural stations are not pristine

Any article comparing urban and rural temperatures
would be remiss if it did not discuss factors that can
cause rural stations not to be pristine. Indeed some of
the factors that cause warming in parts of an urban area
are also present at rural sites. While climatologists most
often think of anthropogenic influences in terms of man-
made structures, such as building a new house or paving
a driveway, there are more subtle aspects as well. One
of the causes of the nighttime urban warming signal is
urban canyon geometry limiting ‘‘sky view factors for
long-wave radiative cooling’’ (Oke 1976, 1981). A sta-
tion on a flat savannah can radiate IR out to the sky at
night from horizon to horizon. In an urban canyon, the
sky view is greatly diminished and therefore IR radiative
cooling at night is limited.

The change in sky view angle may have the potential
to cause systematic biases at rural stations in some re-
gions. For example, many farms in Australia were es-
tablished in grassland. But once wells were put in, farm-
ers planted and cared for trees around their dwellings.
Therefore, among the huge expanses of open farmland,
most of the long-term observing sites are now surround-
ed by trees (N. Nicholls 1998, personal communication).
Although the growing trees’ IR effect may have some
similarities to that of an urban canyon, the shade and
evapotranspiration that the trees provide are also likely
to introduce a cool bias during the day. The potential,
nearly worldwide, artificial impact on observed tem-
peratures caused by tree growth near observing sites

deserves to be thoroughly researched and quantified if
possible.

c. Comparison with other results

As indicated in the literature review, the vast majority
of analyses of UHI’s impact on in situ observations use
inhomogeneous data and therefore are not appropriate
for comparison purposes. Only two large-scale studies
were found that used homogeneous data. These are the
time series analyses of Peterson et al. (1999) and the
Russian and Chinese regions of the analyses presented
in Jones et al. (1990). These analyses found no indi-
cation of significant urban influence on the temperature
signal. However, the results of two additional large-scale
analyses deserve further discussion and perhaps rein-
terpretation in light of the results presented in this paper.
The first is Hansen et al. (2001), which adjusts the trends
in urban stations around the world to have the same
mean trends as the rural stations in their regions. The
data they used were not adjusted for inhomogeneities.
But it is still interesting to note that of all their urban-
ization adjustments, 42% warm the urban trend, indi-
cating that nearly half the urban stations are experienc-
ing urban cooling relative to nearby rural sites. This
agrees with and is fairly similar to the analysis presented
in Fig. 4 but from a time series rather than spatial per-
spective.

The second analysis that could be reinterpreted is Karl
et al. (1988). As mentioned in Section 1c, Karl et al.
(1988) found a relationship between the urban–rural dif-
ference and the population of the metropolitan area. A
linear regression slope is used to determine the urban
heat island adjustment applied to USHCN stations (Eas-
terling et al. 1996). Figure 7 shows the data points used
and the regression line determined for annual average
temperatures by Karl et al. (1988). Note that temperature
was actually regressed against (population)0.45, as that
was determined to have the strongest relationship. While
(population)0.45 can explain 32% of the urban–rural tem-
perature differences, the bulk of that signal comes from
the limited number of data points where urban popu-
lations exceeds 100 000. Though Karl et al. (1988) state
‘‘that urban effects on temperature are detectable even
for small towns with populations under 10,000’’ and
that there is a ‘‘positive urban bias . . . even at very low
urban populations,’’ the regression-based urbanization
adjustment for towns under 10 000 explains less than
2% of the variance, and for towns with populations from
10 000 to 100 000, it only explains 4% of the variance.
While the regression explains 50% of the variance for
cities over 100 000 population, the data used in this
analysis were not adjusted for differences in instru-
mentation or for rooftop sitings and, as presented earlier,
instrumentation and siting characteristics have distinct
urban/rural biases. Despite not adjusting for these two
important factors, examination of Fig. 7 also indicates
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FIG. 7. Karl et al.’s (1988) scatterplots of urban minus rural temperatures vs (population)0.45 along with a population-based UHI
temperature effect regression line. To better reveal the observational values, the results are shown in four different scales on the y axis.

that many urban CONUS sites are cooler than their rural
neighbors.

6. Summary and conclusions

All analyses of the impact of urban heat islands on
in situ temperature observations suffer from inhomo-
geneities or biases in the data. The data used in this
analysis were the most thoroughly homogenized and the
homogeneity adjustments were the most rigorously eval-
uated and thoroughly documented of any large-scale
UHI analysis to date. Using satellite night-lights–de-
rived urban/rural metadata, urban and rural temperatures
from 289 stations in 40 clusters in the CONUS were
compared using data from 1989 to 1991. Once biases
caused by differences in elevation, latitude, time of ob-
servation, instrumentation, and nonstandard siting were
adjusted out of the data, contrary to generally accepted
wisdom, no statistically significant impact of urbani-
zation over the contiguous United States could be found
in the existing in situ temperature observation network.

It is postulated that the reason for this is due to micro-
and local-scale impacts dominating over the mesoscale
urban heat island. Industrial sections of towns may well
be significantly warmer than rural sites, but urban me-
teorological observations are more likely to be made
within park cool islands than industrial regions.

There are several clear implications from this re-
search. The first is that ensuring that the observational
data that one uses in a variety of analyses are homo-
geneous is often crucial to getting an answer regarding
which one has substantial confidence. The homogeneity
adjustments, therefore, need to be very carefully applied

and documented. Simply saying that the dataset is ho-
mogeneous after addressing only one of several prob-
lems is not sufficient. Toward that end, this analysis
suggests that the Quayle et al. (1991) adjustment for the
transition from liquid-in-glass thermometers in cotton
region shelters to the MMTS should be reevaluated.

The second implication has to do with adjustments
to time series to account for the effects of urbanization.
In the past, U.S. time series have been adjusted to ac-
count for conditions other than different instrumenta-
tion, elevation, rooftop siting, etc., that were thought to
cause urban stations to be warmer than rural. However,
since analysis of carefully homogenized data indicates
that CONUS urban in situ stations are not warmer than
nearby rural stations, adjustments to account for urban-
ization in CONUS in situ time series are not appropriate.
How widely this finding should be interpreted cannot
be determined by the research presented here, as it fo-
cused solely on CONUS data. Urban design and station
siting criteria are different in other parts of the world.
However, these results are in keeping with long-term
global analyses of homogeneity adjusted GHCN data
that found century-scale global temperature time series
from only the rural GHCN stations warming at a slightly
higher rate than a time series from the full GHCN dataset
of both rural and urban stations (Peterson et al. 1999).

Additionally, as a community, we need to update our
understanding of urban heat islands, to realize that this
phenomenon is more complex than widely believed by
those not immersed in the field. We should not view all
oddly warmer stations as indications of UHI. Some ur-
ban stations are indeed warmer than nearby rural sta-
tions but almost the same number are colder.
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