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Introduction
Climate change is expected to result in more 
frequent, more intense, and longer heat 
waves (Meehl and Tebaldi 2004). Increased 
mortality associated with heat waves is well 
documented (Basu 2009), and recent research 
suggests that heat waves may increase adverse 
birth outcomes (Basu et al. 2010; Strand et al. 
2011a). However, most U.S.-based research 
examining associations between heat and 
health outcomes have focused on urban areas 
in the north eastern and mid western regions. 
Furthermore, there has been little pub-
lished on whether national heat wave warn-
ing systems are appropriate for all regions. 
The southeastern United States, particularly 
in the Deep South States of Alabama (AL), 
Mississippi, Louisiana, South Carolina, and 
Georgia, compared with the rest of the United 
States, have different climate patterns charac-
terized by long, hot summers with higher 
minimum temperatures and humidity. There 
are also profound differences in demo graphic 
composition, quality and characteristics of 
housing, and urban–rural land-use and vege-
ta tion patterns (Bonan 1997; Brown et al. 
2005; Golant and LaGreca 1994).

Previous studies that examined associa-
tions between heat waves and health outcomes 
have used a variety of heat wave metrics, 

making it difficult to compare results or deter-
mine the most appropriate metric for public 
health warning systems. Heat wave indices 
(HIs) are defined using temperatures alone or 
temperatures plus other meteorological fac-
tors, such as humidity and wind speed, and 
have either absolute or relative temperature 
thresholds that must be exceeded for a speci-
fied duration, ranging from one to several 
consecutive days (Smith et al. 2013). In an 
examination of 16 previously published HIs 
for the period 1979–2011 in the United 
States, Smith et al. (2013) observed sub-
stantial differences in heat wave geographic 
patterns and time trends by HI definition. 
Previous studies have reported stronger posi-
tive associa tions between heat waves and mor-
tality in north eastern and mid western cities 
compared with south eastern cities (Anderson 
and Bell 2011; Basu 2009), which suggests 
that acclimatization may contribute to region-
specific exposure–response relationships, and 
that heat wave metrics and warnings may need 
to be regionally specified (Barnett et al. 2010; 
Bobb et al. 2011; Vaneckova et al. 2011).

Several studies have highlighted the need 
to increase our understanding of extreme heat 
events and adaptation strategies in rural versus 
urban areas (Huang et al. 2011; Knowlton 
et al. 2007; Reid et al. 2009). Evidence from 

previous studies has suggested that excess 
mortality and morbidity due to extreme heat 
events in urban environments are related to 
vulnerable popula tions and the urban heat 
island effect (Basu 2009; Huang et al. 2011; 
Kovats and Hajat 2008). Rural communities, 
although not as well studied as urban com-
munities, may have unique vulnerabilities, 
such as increased distance to care, greater time 
spent outdoors, and lack of heat wave response 
systems (e.g., cooling centers) (Merwin et al. 
2006; Weisskopf et al. 2002). Land-use pat-
terns and demographic compositions in Deep 
South urban and rural regions differ from 
regions analyzed in previous heat wave health 
studies. In particular, the Deep South states 
have more poorly maintained housing stock, 
higher poverty, and both urban and rural areas 
with large non-Hispanic African–American 
populations (Golant and LaGreca 1994).

We analyzed Alabama birth and death 
records to examine a) whether the use of dif-
ferent HIs results in differing associations 
between heat waves and health outcomes, and 
b) whether associations between heat waves 
and health outcomes differ by rurality. 

Methods
Vital records and outcomes. We obtained 
records of live births and deaths for May–
September of 1990–2010 from the Alabama 
Department of Public Health (ADPH; 
Montgomery, AL). The study protocol 
was reviewed and approved by the ADPH 
Institutional Review Board and the University 
of Alabama at Birmingham Institutional 
Review Board (protocol #X110706005).

Live birth records included the date of 
birth, gestational age, birth weight, and the 
mother’s residential ZIP code. After exclud-
ing 81 births with unlikely weights (< 200 g) 
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(Wolf and Armstrong 2012), 62,803 (of 
543,980 births) were classified as preterm 
births (PTBs), having gestational ages between 
24 and 37 weeks (Morgan et al. 2008). Of 
these, 60,466 PTBs had birthdates, residences 
in Alabama ZIP codes, and available meteoro-
logical and rurality data.

Death records indicated the date of death, 
the deceased’s residential ZIP code, and the 
cause of death coded by the International 
Classification of Diseases 9th (ICD-9) or 
10th (ICD-10) revision (World Health 
Organization 1977, 2010). Of 381,776 deaths 
in Alabama (1990–2010), 347,432 deaths 
were non accidental (ICD-9 codes < 800, 
and ICD-10 codes with letters A–R) (Crouse 
et al. 2012). Of these, 301,126 non accidental 
deaths (NADs) had associated dates, resi-
dences in Alabama ZIP codes, and available 
meteorological and rurality data.

HIs. Sixteen HIs were identified from the 
public health and climate change literature 
(Anderson and Bell 2009; Anderson and Bell 
2011; Hattis et al. 2012; Meehl and Tebaldi 
2004; Peng et al. 2011; Robinson 2001; 
Rothfusz 1990; Steadman 1979, 1984; Tan 
et al. 2007), as well as from indices used by 
the National Weather Service to develop a 
public warning system (Rothfusz 1990; 
Steadman 1979). Complete definitions, cal-
culation methods, and heat wave geographical 
patterns of these 16 HIs by six continental 
U.S. regions and temporal trends during 
1979 to 2011 have been described previously 
(Smith et al. 2013), and short definitions 
are shown in Table 1. Briefly, meteorologi-
cal data (temperature, specific humidity, sur-
face pressure, surface downward shortwave 
radiation, surface downward longwave radia-
tion, and directional wind components) on a 
12.5-km grid for 1990–2010 were obtained 

by Smith et al. (2013) from Phase 2 of the 
North American Land Data Assimilation 
System (NLDAS-2) (Cosgrove et al. 2003) 
and used to develop daily ZIP code–level HI 
estimates for the current study. Heat wave 
days were identified at the ZIP code level 
using each day’s meteorological variables. 
Relative HIs were based on the individual 
ZIP code’s 1990–2010 meteorological his-
tory. If > 50% of land area within a ZIP 
code was above the specific HI threshold on 
a given day, the ZIP code was determined to 
be in a heat wave. ZIP codes, obtained from 
either the mother’s residence (birth records) 
or deceased’s residence (death records), were 
used in combination with the event day (i.e., 
the day of pre term birth or the day of death) 
to merge vital records with the census ZIP 
code tabulation area–based HIs. HI16 was 
eliminated from further analysis because no 
heat wave days occurred in Alabama during 
the study period according to this definition. 
For each of the 640 ZIP codes used, the mean 
area (± SD) was 226 km2 ± 200. 

Rurality measures. Vital records were 
merged with two ZIP code–level measures of 
rurality. First, Rural-Urban Commuting Area 
Codes (RUCA), version 2.0 (Hart et al. 2005) 
were classified using the suggested “cate-
gorization B,” which divides among “urban 
focused,” “large rural city/town (micro politan) 
focused,” and “small rural and isolated town 
focused” categories. The rural RUCA category, 
consisting of areas with low levels of com-
muters who travel to places with populations 
≥ 10,000, represents populations most eco-
nomi cally disconnected from cities and larger 
towns (Hart et al. 2005; Kent et al. 2013). 
Second, Census 2000 population densities 
(U.S. Census Bureau 2000) were classified 
into tertiles, with the highest tertile capturing 

the most population-dense urban areas. In 
addition to these measures of rurality, 
summer time maximum 16-day green vegeta-
tion fraction (GVF), a measure of percent live 
vegetation cover, was derived from Moderate 
Imaging Resolution Spectrometer (MODIS) 
satellite sensor data at 1-km resolution (Zeng 
et al. 2000). To calculate a ZIP code–level 
GVF value, we took an average of 1-km GVF 
grid cells that had centroids within a ZIP 
code. GVF was calculated for 2004, a typi-
cal, non drought year in Alabama; GVF was 
divided into tertiles for analyses.

Study design and analysis. We used a 
time-stratified case-crossover design (Basu 
et al. 2005; Crouse et al. 2012; Janes et al. 
2005b). A case-crossover design emulates a 
retro spective non randomized cross over study; 
in this design each case event (either PTB or 
NAD) is matched with a counter factual con-
trol exposure period (Maclure 1991). In the 
time-stratified sampling design, all days that 
are on the same day of the week and within 
the same month as the case day are selected 
as control periods. The time-stratified control 
selection method is frequently used in environ-
mental health studies because it controls for 
time trends, seasonality, and overlap bias 
(Basu et al. 2005; Crouse et al. 2012; Janes 
et al. 2005a, 2005b; Tong et al. 2012). Case-
crossover data are analyzed in the same man-
ner as a matched case–control design, using 
the case and matched time-stratified control 
periods as stratum in conditional logistic 
regression models (Wang et al. 2011). Analyses 
were run using SAS 9.3 (SAS Institute Inc., 
Cary, NC), and splines in conditional logistic 
regression models were performed using the 
LGTPHCURV9 macro (Li et al. 2011).

Lags, duration, and seasonality. To deter-
mine whether associations of PTB and NAD 

Table 1. Summary of data on HIs, PTB (n = 60,466), and NAD (n = 301,126) in 640 Alabama ZIP codes during 1990–2010.

HI Definition Reference
HI days/year/

ZIP [n (%)]a PTB [n (%)] NAD [n (%)]
HI01 Mean daily temperature > 95th percentile for ≥ 2 consecutive days Anderson and Bell 2011 1.34 (0.9) 652 (1.1) 2,678 (0.9)
HI02 Mean daily temperature > 90th percentile for ≥ 2 consecutive days Anderson and Bell 2011 5.41 (3.5) 2,373 (3.9) 10,463 (3.5)
HI03 Mean daily temperature > 98th percentile for ≥ 2 consecutive days Anderson and Bell 2011 0.18 (0.2) 111 (0.2) 444 (0.2)
HI04 Mean daily temperature > 99th percentile for ≥ 2 consecutive days Anderson and Bell 2011 0.01 (0.0) 1 (0.0) 11 (0.0)
HI05 Minimum daily temperature > 95th percentile for ≥ 2 consecutive days Anderson and Bell 2011 0.08 (0.1) 44 (0.1) 104 (0.0)
HI06 Maximum daily temperature > 95th percentile for ≥ 2 consecutive days Anderson and Bell 2011 3.54 (2.3) 1,610 (2.7) 7,385 (2.5)
HI07 Maximum daily temperature ≥ 81st percentile every day, ≥ 97.5th percentile for 

≥ 3 nonconsecutive days, and consecutive day average ≥ 97.5th percentile
Peng et al. 2011 1.77 (1.2) 839 (1.4) 4,106 (1.4)

HI08 Maximum daily apparent temperatureb > 85th percentile for ≥ 1 day Hattis et al. 2012; Steadman 1984 19.33 (12.6) 8,333 (13.8) 37,169 (12.3)
HI09 Maximum daily apparent temperatureb > 90th percentile for ≥ 1 day Hattis et al. 2012; Steadman 1984 10.91 (7.1) 4,681 (7.7) 21,018 (7.0)
HI10 Maximum daily apparent temperatureb > 95th percentile for ≥ 1 day Hattis et al. 2012; Steadman 1984 3.51 (2.3) 1,568 (2.6) 6,826 (2.3)
HI11 Maximum daily temperature > 35°C (95°F) for ≥ 1 day Tan et al. 2007 1.43 (0.9) 497 (0.8) 2,276 (0.8)
HI12 Minimum daily temperature > 26.7°C (80.1°F) or maximum daily temperature 

> 40.6°C (105.1°F) for ≥ 2 consecutive days
Robinson 2001 2.90 (1.9) 1,203 (2.0) 5,701 (1.9)

HI13 Maximum daily heat indexc > 80°F for ≥ 1 day Rothfusz 1990; Steadman 1979 125.47 (82.1) 50,176 (83.0) 245,833 (81.6)
HI14 Maximum daily heat indexc > 90°F for ≥ 1 day Rothfusz 1990; Steadman 1979 78.26 (51.2) 31,495 (52.1) 151,189 (50.2)
HI15 Maximum daily heat indexc > 105°F for ≥ 1 day Rothfusz 1990; Steadman 1979 3.35 (2.2) 1,368 (2.3) 5,581 (1.9)
HI16 Maximum daily heat indexc > 130°F for ≥ 1 day Rothfusz 1990; Steadman 1979 NA NA NA

NA, not applicable. 
aPercentages of HI days/year/ZIP code were calculated using the 153 days in May–September as the denominator. bApparent temperature is a function of air tempera ture, humidity, 
wind speed, and solar radiation. cThe HI is a function of air temperature and humidity, parameterized to take account of other environmental factors. 
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with heat waves varied according to charac-
teristics of the heat wave, we examined asso-
ciations of each outcome with heat wave days 
(defined using the 15 HIs) versus non–heat 
wave control days on the same day as the 
event (i.e., the day of birth or death, lag0) 
and up to 6 days before the event (lag1–lag6). 
Previous studies have reported associations 
between acute morbidity and heat within a 
few days of the outcome, with days further 
back in time carrying null associations (Ye 
et al. 2012). To compare our results with 
those of previous studies, we examined 
whether lag0 associations changed when 
we adjusted for daily mean temperature as 
a natural cubic spline with three degrees of 
freedom and equally spaced knots (Anderson 
and Bell 2009). We performed separate analy-
ses to determine whether the timing of the 
heat wave influenced associations. Specifically, 
we ran models that included a product term 
between heat wave days and a variable indi-
cating whether the heat wave day occurred 
during the first heat wave of the season; we 
also ran a second set of models that included 
product terms between heat wave days and 
a variable indicating whether the heat wave 
occurred early in the season (May–July) or late 
in the season (August–September). To exam-
ine modifica tion of associations according to 
the duration of heat waves, we determined the 
median length of heat waves (in each of our 
birth record and death record samples) defined 
according to each HI, and estimated associa-
tions separately for heat wave days during heat 
waves that were shorter than the median dura-
tion and for heat wave days during heat waves 
that were longer than the median duration. 
We used conditional logistic regression mod-
els to estimate odds ratios (ORs) and 95% 
confidence intervals (CIs) for the associations 
between heat wave days and PTB or NAD; 
associations are reported as the percent dif-
ference in the odds of the outcome on heat 
wave days compared with non–heat wave days 
[percent difference = (OR – 1) × 100]. We 

used Akaike information criterion (AIC) val-
ues to estimate relative goodness of fit across 
the models (Bozdogan 1987).

Estimating model parameter differences. 
Based on AIC values and previous applications 
of the HIs, we selected six HIs to examine fur-
ther. To estimate whether there were signifi-
cant differences in parameter estimates across 
the models, we calculated bootstrapped bias-
corrected percentile-based CIs. We calculated 
the CIs using 999 samples with replacement 
and determined the bias-corrected 2.5 and 
97.5 percentiles (Ajmani 2009; Carpenter and 
Bithell 2000; UCLA: Statistical Consulting 
Group 2012). If a bootstrapped 95% CI for 
the difference between two point estimates on 
the lnOR scale did not include zero, we con-
sidered the two estimates to be significantly 
different (p < 0.05).

Estimating effect modification by rural-
ity. We modeled multiplicative interaction 
terms between RUCA categories and heat 
wave days to determine whether associations 
differed among ZIP codes classified as urban, 
large town, or small town. In addition, we 
estimated associations according to tertiles of 
population density and GVF as alternative 
measures of rurality.

Results
Distribution of heat waves and cases on heat 
wave days across HIs. Table 1 shows that the 
numbers of PTBs and NADs occurring dur-
ing heat waves varied depending on the HI 
definition used. For example, when heat waves 
were defined using HI04 (mean daily tem-
perature > 99th percentile for ≥ 2 consecutive 
days), each ZIP code had an average of 0.01 
heat wave days/season, resulting in a total of 
1 PTB and 11 NADs on heat wave days dur-
ing 1990–2010. In contrast, when heat waves 
were defined using HI13 (maximum daily 
heat index > 80°F for ≥ 1 day), each ZIP code 
had an average of approxi mately 125 heat 
wave days/season (82% of the 153 days from 
May to September), and > 80% of all PTB 

and NAD occurred on days classified as a 
heat wave day.

Associations with heat waves defined using 
different HIs. Associations between heat wave 
days and PTB were positive for heat waves 
defined by 9 of the 15 HIs when models 
were not adjusted for mean daily temperature 
(Figure 1A; see also Supplemental Material, 
Table S1). Positive associations with heat 
waves defined using HI01 (mean daily tem-
perature > 95th percentile for ≥ 2 consecu-
tive days) and HI03 (mean daily temperature 
> 98th percentile for ≥ 2 consecutive days) 
were statistically significant, with 11.6% 
(95% CI: 0.9, 23.4%) and 32.4% (95% CI: 
3.7, 69.1%) higher odds of PTB on heat 
wave versus non–heat wave days, respectively. 
Associations with heat wave days defined 
using HIs based on mean daily tempera-
tures increased as the threshold temperature 
increased from the 90th percentile (HI02, 
1.5% higher PTB; 95% CI: –3.5, 6.9%) to 
the 95th and 98th percentiles (HI01 and 
HI03, respectively), but PTB was nega-
tively associated with heat wave days when 
the mean daily temperature threshold was 
> 99th percentile (HI04, 33.3% lower PTB; 
95% CI: –92.4, 453.9). However, as noted 
above, using the more stringent HI04 defini-
tion, only one PTB occurred during the study 
period. When heat waves were defined using 
HI12, which requires exceeding both mini-
mum and maximum daily temperature thresh-
olds for ≥ 2 consecutive days, the odds of PTB 
was significantly lower on heat wave days 
compared with non–heat wave days (9.7% 
decrease; 95% CI: –16.4, –2.5%). Although 
a total of 1,203 PTBs occurred on heat wave 
days, defined using HI12, the heat waves were 
almost entirely limited to ZIP codes in the 
southwest corner of Alabama, on the Gulf of 
Mexico (Figure 2C).

Associations between heat wave days 
and NAD were positive for heat waves 
defined by 7 of the 15 HIs (without adjust-
ment for mean temperature) (Figure 1B; 

Figure 1. Percent change (95% CI) in PTB (A) or NAD (B) on the day of a heat wave (lag0) compared with corresponding non–heat wave control days, by 15 HIs. 
Estimates are derived from ORs and 95% CIs estimated using unadjusted case-crossover conditional logistic regression models. See Supplemental Material, 
Table S2, for corresponding numeric data.
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see also Supplemental Material, Table S1). 
Associations were statistically significant for 
heat waves defined by 3 of the HIs (HI02, 
HI07, and HI09). Specifically, the odds of 
NAD were higher in association with heat 
wave days defined by HI02 (mean daily tem-
perature > 90th percentile for ≥ 2 consecu-
tive days, 3.7% higher; 95% CI: 1.1, 6.3%), 
HI07 (based on 2 maxi mum daily tempera-
ture percentile cutoffs for at least 3 consecutive 
days, 5.5% higher; 95% CI: 1.0, 10.2%), and 
HI09 (maximum daily apparent temperature 
> 90th percentile for ≥ 1 day, 2.0% higher; 
95% CI: 0.3, 3.8%). Associations between 
NAD and heat wave days defined using HIs 
based on maximum daily apparent tem-
peratures increased as the threshold apparent 

temperature increased from the 85th percen-
tile (HI08, 1.2% higher NAD; 95% CI: 
–0.1, 2.5%) to the 90th (HI09, 2.0% higher 
NAD; 95% CI: 0.3, 3.8%) and 95th per-
centiles (HI10, 2.7% higher NAD; 95% CI: 
–0.2, 5.7%). We found no evidence of a posi-
tive exposure response for PTB and apparent 
temperature HIs.

When models were adjusted for mean 
daily temperature, we observed no statisti-
cally significant positive associations between 
heat wave days and PTB or NAD (for any 
HI), and adjustment moved some positive 
associations closer to the null (i.e., HI01 and 
HI03 heat wave days with PTB; and HI02, 
HI07, and HI09 heat wave days with NAD) 
(see Supplemental Material, Table S1). 

Others changed from positive to negative, 
and the negative association with heat wave 
days defined using HI09 became statisti-
cally signifi cant (4.7% lower odds of PTB, 
95% CI: –8.5, –0.6%). However, adjusting 
for mean daily temperature had little effect 
on associations between heat wave days and 
PTB or NAD when heat waves were defined 
based on absolute values [vs. relative (per-
centile) thresholds] for heat index (HI13, 
HI14, HI15), maximum daily temperature 
(HI11), or minimum and maximum daily 
tem peratures (HI12).

Differences in associations according 
to heat wave qualities. We next evaluated 
modification of associations according to lags, 
heat wave duration, and seasonality (with-
out adjustment for mean temperature). Of 
10 relative HI lag0 models, 2 had significant 
relation ships with PTB and 3 had significant 
relationships with NAD (Figure 1; see also 
Supplemental Material Table S1). All sig-
nificant relative HI associations were posi-
tive. Of 5 absolute HI lag0 models, 1 had a 
significant negative relation ship with PTB 
and none had significant relation ships with 
NAD. Associations did not change from posi-
tive to negative with longer lags, as would 
be expected with mortality displacement 
(Figure 3; see also Supplemental Material, 
Figure S1). Longer duration heat waves 
numerically increased point estimates of asso-
ciations (i.e., closer to the null for negative 
associations and further from the null for 
positive associations) with health outcomes 
for 10 of 15 HIs examined in PTB duration 
models and 7 of 15 HIs examined in NAD 
duration models (see Supplemental Material, 
Figure S2). Associations between heat wave 
days and the outcomes were generally consis-
tent between the first heat wave of the season 
and subsequent heat waves, or between early- 
and late-season heat waves (data not shown).

Evaluation of model fits and differences 
in parameter estimation across HIs. The AIC 
is a relative measure of information lost when 
fitting the model; hence, smaller AIC values 
suggest better fitting models. AIC values dif-
fered by > 2 for models containing different 
HIs (see Supplemental Material, Table S2), 
indicating that there are likely differences in 
model fits (Burnham and Anderson 2004). 
Models of heat waves defined using HI02 
had the lowest AIC across the NAD mod-
els, whereas models of heat waves defined 
using HI12 carried the lowest AIC among 
all PTB models. Across PTB models, models 
of heat waves defined using HI01 and HI03 
had similar fits (AIC differences of 2.35 and 
1.92, respectively) to models including HI12. 
HI12 had a negative association with PTB, 
whereas HI01 and HI03 had positive associa-
tions with PTB. Across NAD models, models 
of heat waves defined using HI07 and HI09 

Figure 2. Number of Alabama ZIP code–level average HI days per year (indicated by the color scale) by 
(A) HI02, (B) HI07, (C) HI12, and (D) HI15. Heat waves are defined as follows: HI02, mean daily temperatures 
> 90th percentile for ≥ 2 consecutive days; HI07, maximum daily temperatures ≥ 81st percentile every day, 
≥ 97.5th percentile for ≥ 3 non consecutive days, and consecutive day average ≥ 97.5th percentile; HI12, 
minimum daily temperatures > 26.7°C (80.1°F) or maximum daily temperature > 40.6°C (105.1°F) for ≥ 2 con-
secutive days; and HI15, maximum daily heat index values > 105°F for ≥ 1 day. The Gulf of Mexico borders 
the southwestern corner of Alabama, with the Florida panhandle separating the ocean on the south-
eastern corner. Western, northern, and eastern Alabama borders other states.
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had similar fits (AIC differences of 2.03 and 
2.55, respectively) to models including HI02. 
HI02, HI07, and HI09 all had positive asso-
ciations with NAD.

HIs 02, 03, 07, 09, 12, and 15, which offer 
a representation of the different types of HIs 
used to define heat waves in previous epide-
miological analyses and for heat wave warn-
ing systems, were examined in further detail. 
Bias-corrected percentile-based bootstrapped 
CIs indicate that in PTB models using HI03, 
associations were significantly numerically 
higher than those using HI09, HI12, or HI15 
associations, whereas HI12 associations were 
significantly numerically lower than estimates 
for HI02 and HI07. For NAD models, HI07 
associations were significantly numerically 
higher than those for HI12 and HI15. 

Differences in associations according to 
rurality categories. Because the HIs based 
on mean daily temperature (HI01–HI03) 
had simple definitions at different relative 
tempera ture cut points for defining a heat 
wave and also had significant associations 
with adverse outcomes (HI01 and HI03 for 
PTB, HI02 for NAD), we chose these heat 
wave metrics to examine whether associations 
differed by rurality. 

All statistically significant rurality-specific 
associations between heat wave days and PTB 
were positive (Figure 4A–C). Heat wave days 
defined by HI03 were positively associated 

with PTB in ZIP code areas with popula-
tions in the lowest (59.9% increase; 95% CI: 
–0.5, 155.6%) and middle (75.0% increase; 
95% CI: 20.7, 153.8%) tertiles of popula-
tion density, but were negatively associated 
with PTB in ZIP code areas with populations 
in the highest tertile of population density 
(23.1% decrease; 95% CI: –51.6, 22.2%) 
(for HI03 and population density, p = 0.02) 
(Figure 4B). Heat wave days defined by HI02 
were positively associated with PTB in ZIP 
code areas with the highest vegetation (9.6% 
increase; 95% CI: 0.1, 20.1%), but there was 
little evidence of associations for ZIP codes 
with medium (4.9% decrease; 95% CI: 
–13.0, 4.0%) or low vegetation (0.5% 
increase; 95% CI: –8.3, 10.1%) (for HI02 
and GVF, p = 0.09) (Figure 4C). All other 
HI*rurality interaction terms in PTB models 
had p-values > 0.10.

All statistically significant rurality-
specific associations between heat wave days 
and NAD were positive (Figure 4D–F). 
Associations between heat waves and NAD 
were consistently positive in the urban cate-
gory for every HI*rurality model, except for 
the association between HI03 heat wave days 
and NAD in the RUCA urban category (2.7% 
decrease; 95% CI: –15.2, 11.6%), but the 
inter action term in this model was not sig-
nificant (for HI03 and RUCA interaction, 
p = 0.32) (Figure 4D). Urban categories were 

consistently numerically higher in heat-wave-
by-rurality models with interaction p-values 
≤ 0.10. HI01 heat wave days showed a positive 
association with NAD in RUCA urban regions 
(4.8% increase; 95% CI: –10.9, 10.9%), 
an associa tion closer to the null in RUCA 
large town regions (1.8% increase; 95% CI: 
–10.7, 16.0%) and a negative association in 
RUCA small town regions (10.9% decrease; 
95% CI: –21.1, 0.7%) (for HI01 and RUCA 
interaction, p = 0.07) (Figure 4D). HI01 heat 
wave days showed a positive association with 
NAD in the most population-dense tertile 
(7.2% increase; 95% CI: –1.5, 16.7%) and the 
mid-density tertile (2.9% increase; 95% CI: 
–5.5, 11.9%), but a negative association in the 
least population-dense tertile (76.1% decrease; 
95% CI: –14.2, 2.8%) (for HI01 and popula-
tion density interaction, p = 0.10) (Figure 4E). 
All other heat wave by rurality interaction 
terms in NAD models had p-values > 0.10.

Discussion
In the present study, we examined which of 
16 HIs were most predictive of two impor-
tant adverse health outcomes, PTB and 
NAD, using novel exposure and health out-
come data sets covering both urban and rural 
areas in Alabama. Compared with non–heat 
wave control days, heat wave days defined 
using HI02 were associated with 3.7% 
(95% CI: 1.1, 6.3%) higher NAD, and heat 

Figure 3. Percent change in PTB (A,B) or NAD (C,D) risks by selected HI lag day (A,C) and heat wave duration (B,D) using HI02, HI07, HI12, and HI15. Estimates are 
derived from ORs and 95% CIs estimated using unadjusted case-crossover conditional logistic regression models. Heat wave length cut points were determined 
using the median heat wave length for each HI. See Supplemental Material, Table S1, for corresponding numeric data. 
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wave days defined using HI03 were associated 
with 32.4% (95% CI: 3.7, 69.1) higher PTB. 
After adjusting for temperature, these positive 
associations were attenuated, suggesting that 
increases in temperature can account for some 
of the effects observed during heat waves.

PTB results compared with previous 
findings. Relationships between birth out-
comes and heat waves have not been studied 
extensively. In a study in California that 
also used a case-crossover design, Basu et al. 
(2010) reported that a 10°F increase in weekly 
temperatures was associated with an 8.6% 
increase in PTB. Other studies have reported 
a null association between temperature and 
gesta tion length and indicated that previous 
associations might be attributed to uncorrected 
bias in cohort study analyses (Strand et al. 
2011a, 2011b; Wolf and Armstrong 2012). 
The present study suggests that there may be 
a positive association between PTB and heat 
wave days defined using a percentile-based 
mean daily temperature metric (HI01 and 
HI03). Associations between PTB and heat 
wave days defined using other metrics were not 
significant, with the exception of a signifi cant 
negative association with heat wave days based 
on a previously used metric (HI12), which 
in Alabama exhibited heat waves only in a 
small region of the state located on the Gulf of 
Mexico (Figure 2C). Region might play a role 

in differences in associations: Basu et al. (2010) 
found differences in associations between 
heat waves and PTB across 16 counties in 
California. 

Comparison of NAD results with previous 
findings. Using data from 43 cities, Anderson 
and Bell (2011) found an average 3.7% 
increase in mortality associated with a heat 
wave defined as ≥ 2 consecutive days with 
mean temperatures > 95th percentile during 
May through September (HI01); however, 
when cities were separated by region, the 
authors found a lower, non significant 
association in the Southeast (1.8% increase; 
95% CI: –0.11, 3.84%). Our unadjusted 
results showed a similar association. However, 
after adjusting for daily mean temperature, 
the point estimate fell below zero (–2.2%; 
95% CI: –7.4, 3.3%). Peng et al. (2011) 
examined the association between heat wave 
days, defined using HI07, and mortality in 
Chicago, Illinois, and reported a temperature-
adjusted 7.8% higher mortality (95% CI: 
6.1, 9.5%), compared with a 3.3% increase 
(95% CI: –1.3, 8.2%) in the present study. 
In our study, unadjusted associa tions 
between relative-apparent-temperature–
defined heat waves (HI08, HI09, and HI10, 
with maximum daily apparent tempera ture 
thresholds of > 85th, > 90th, and > 95th 
percentile, respectively) followed patterns 

similar to those reported by Hattis et al. (2012) 
in Massachusetts: More extreme heat waves 
had larger associations (Figure 1), although 
the associations found in the present study 
(1.2–2.7%) were smaller than those reported 
by Hattis et al. (2012) (3.7 to 5.3%). 

Examination of overall heat wave effects 
among HIs. Our results suggest that signifi-
cant positive associations were more com-
monly present when relative, compared with 
absolute, HIs were used to define exposure. 
This suggests that public health warning sys-
tems may be more effective using regionally 
specific definitions. This finding is consistent 
with other studies (Knowlton et al. 2007) and 
suggests that reliance on the absolute mea-
sures of the National Weather Service alert 
system (HI13–HI16) may not be optimal for 
protecting public health.

Previous physiological research shows 
that high temperatures, as well as increased 
humidity, heighten the risk of heat ill-
ness (Coris et al. 2004; Perry et al. 2011). 
However, findings in the present study sug-
gest that HIs including humidity and other 
meteorological factors [i.e., heat waves defined 
using apparent temperature (HI08–HI10) or 
heat index values HI13–HI16)] may not be 
more predictive of adverse heat-related health 
effects, which is consistent with previous 
research (Vaneckova et al. 2011). In addition, 

Figure 4. Percent increase in PTB (A–C) or NAD (D–F) on a heat wave day by HI (HI01, HI02, or HI03) stratified by (A,D) RUCAs, (B,E) population density 
tertiles, and (C,F) green vegetation factor tertiles. Estimates are derived from ORs and 95% CIs estimated using unadjusted case-crossover conditional logistic 
regression models. 
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minimum or nighttime temperature has been 
shown to be predictive of mortality (Anderson 
and Bell 2011; D’Ippoliti et al. 2010), pos-
sibly because of decreased recovery time or 
association with humidity. We evaluated one 
metric based on minimum temperature alone 
(HI05; minimum daily temperature > 95th 
percentile for ≥ 2 consecutive days), which 
had a non significant positive association with 
PTB. Mean temperatures, which reflect both 
minimum and maximum temperatures, seem 
to be more predictive of health outcomes in 
the present study, which is consistent with 
previous studies (Anderson and Bell 2009; 
Barnett et al. 2010; Vaneckova et al. 2011).

Model power is variable because of the 
different number of classified heat wave days 
between HIs, due not only to the observed 
effect–measure strength but also to the total 
number and geographical distribution of heat 
wave days. However, in comparing point 
estimates of associations between heat waves 
and health outcomes, there are patterns in 
results of mortality models using HIs with 
similar proportions of cases on heat wave days 
across the 20-year period of study (HI02, 
HI06, HI10, HI11, and HI15; Table 1). 
From NAD models containing these five 
HIs, those with relative-scale cut-point 
defini tions (HI02, HI06, and HI10) showed 
similar positive associations and had lower 
confidence limits that were above or near zero 
(Figure 1B). Models with absolute-scale cut-
point definitions (HI11 and HI15) resulted 
in negative associations closer to zero. In PTB 
models using these five heat wave definitions, 
relative-scale cut-point HI-defined heat wave 
days had positive (HI02 and HI06) or near-
null (HI10) associations, and absolute-scale 
cut-point HI-defined heat wave days had 
negative associations (Figure 1A).

Previous and current research highlights 
the importance of the choice of HI for inter-
pretation of health effects related to climate 
change. Based on the current and previous 
analyses (Anderson and Bell 2009; Vaneckova 
et al. 2011), HIs based on mean daily tem-
perature (such as HI01–HI03) may be the 
most useful and simplest metric for the United 
States, although more comparative analyses 
at the regional level are needed. Smith et al. 
(2012) suggested that the Southeast, com-
pared with the rest of the United States, has 
experienced the most widespread increase 
in heat wave days from 1979 to 2011 across 
the majority of HIs (Smith et al. 2013). 
Specifically, increases in HI01, HI02, HI06, 
HI07, HI08, HI09, HI11, HI14, and HI15 
have been greater in the Southeast than in 
most other U.S. regions. HI02, HI06, HI09, 
HI11, and HI14 showed more than a half-day 
average increase in the yearly number of heat 
wave days within the Southeastern United 
States over the 1979 to 2011 period. From 

the perspective of projecting future climate 
change impacts, choosing HIs based on rela-
tive daily temperatures from these five metrics 
(i.e., HI02 and HI06) has a practical advan-
tage because they show positive associations 
with adverse health outcomes, and because 
projecting daily air temperature is a simpler 
(although not trivial) problem relative to pro-
jecting multiple meteoro logi cal variables at 
subdaily time scales, as is required by the more 
complex HIs.

Comparison of heat wave characteristics 
across HIs. Previous studies have suggested that 
associations between heat wave days and mor-
tality are stronger during heat waves of lon-
ger duration and during the first heat wave of 
the season (Anderson and Bell 2011). Results 
of the present study suggest that longer heat 
waves are associated with increased magni-
tude of the positive associations with NAD, 
although seasonality patterns were not found 
(Figure 3; see also Supplemental Material, 
Figure S2; data not shown for seasonality).

Effect–measure modification by rurality 
across HIs. Recent literature focused on urban 
areas suggests that urban regions have higher 
mortality risks from heat waves, although rural 
areas are rarely studied (Basu 2009). Based 
on numerous studies, prominent risk factors 
for heat wave–associated mortality include 
social isolation, poverty, and age > 65 years 
(Ebi et al. 2006; English et al. 2009; Haines 
et al. 2006), all of which are prevalent in many 
rural areas. Yet previous studies have used 
exposure variables (e.g., land surface tempera-
ture) in urban–suburban areas, not rural areas 
(Hondula et al. 2012; Johnson et al. 2009). 
Heat wave warning systems that use relative 
thresholds are typically based on average tem-
peratures in relatively large regions containing 
both urban and rural areas (Lowe et al. 2011). 
Results of the present study do not suggest 
strong effect modification by rurality for heat 
wave–related PTB or NAD. Although NAD 
risk may be heightened in urban areas, with 
positive associations consistent in urban areas 
but not in more rural areas, most inter action 
terms between heat waves and rurality were not 
significant (p > 0.05). All significant rurality-
specific associations were positive.

Potential limitations. As with previous 
studies examining relationships between heat 
waves and health outcomes, we did not have a 
measure of time spent outdoors to determine 
the degree to which subjects were exposed to 
ambient temperatures. Although air condition-
ing has been found to modify the association 
between temperature and mortality (Anderson 
and Bell 2009), as with most heat wave studies, 
we did not have a measure of air condition-
ing. Also, we did not adjust for air pollution. 
However, Anderson and Bell (2009) found 
that relationships between tempera ture and 
mortality remained after adjustment for air 

pollution exposure. The present study includes 
data only from Alabama, so it is not generaliz-
able to other regions with different climates, 
demographics, and housing characteristics. As 
in most previous heat wave studies, we did 
not adjust for the multiple comparisons that 
were examined.

Conclusions
Our results suggest that previous findings of 
associations between heat waves and adverse 
health outcomes may also apply in the state of 
Alabama, in the southeastern United States. 
However, associations were highly variable 
depending on the measure used to define heat 
waves. Our findings show that the use of differ-
ent HIs can result in different association esti-
mates when studying health effects of extreme 
heat events. These findings have implications 
for operational warning systems and for studies 
designed to quantify health impacts of climate 
change. Interestingly, it was not clear whether 
including multiple health-relevant meteorologi-
cal parameters in an index improved model fits 
or whether use of these parameters was more 
likely to find significant associations, suggesting 
that simple, temperature-only indices might be 
most appropriate for use in warning systems 
and for climate impacts analysis. Finally, heat 
wave days were associated with PTB and NAD 
in both rural and urban areas, depending on 
the heat wave definition used, highlighting the 
need to develop heat wave response systems in 
both cities and rural areas.
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