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[1] Prior work has shown that probability distributions of
column water vapor and several passive tropospheric chem-
ical tracers exhibit longer-than-Gaussian (approximately
exponential) tails. The tracer-advection prototypes explain-
ing the formation of these long-tailed distributions motivate
exploration of observed surface temperature distributions for
non-Gaussian tails. Stations with long records in various cli-
mate regimes in National Climatic Data Center Global Sur-
face Summary of Day observations are used to examine
tail characteristics for daily average, maximum and mini-
mum surface temperature probability distributions. Each is
examined for departures from a Gaussian fit to the core (here
approximated as the portion of the distribution exceeding
30% of the maximum). While the core conforms to Gaussian
for most distributions, roughly half the cases exhibit non-
Gaussian tails in both winter and summer seasons. Most of
these are asymmetric, with a long, roughly exponential, tail
on only one side. The shape of the tail has substantial impli-
cations for potential changes in extreme event occurrences
under global warming. Here the change in the probability
of exceeding a given threshold temperature is quantified in
the simplest case of a shift in the present-day observed distri-
bution. Surface temperature distributions with long tails
have a much smaller change in threshold exceedances
(smaller increases for high-side and smaller decreases for
low-side exceedances relative to exceedances in current cli-
mate) under a given warming than do near-Gaussian distri-
butions. This implies that models used to estimate changes
in extreme event occurrences due to global warming should
be verified regionally for accuracy of simulations of proba-
bility distribution tails. Citation: Ruff, T. W., and J. D. Neelin
(2012), Long tails in regional surface temperature probability dis-
tributions with implications for extremes under global warming,
Geophys. Res. Lett., 39, L04704, doi:10.1029/2011GL050610.

1. Introduction

[2] Understanding the nature of potential changes in the
probability of extreme climate/weather events in the context
of global warming is vital for future risk management and
assessment of agricultural, economic and ecosystem con-
sequences [Meehl et al., 2000; Parmesan et al., 2000;
Christensen et al., 2007; Schlenker and Roberts, 2009].
There are indications that high extreme temperature
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anomalies have become more frequent and larger in magni-
tude in many regions during the past century, and that the
occurrence and magnitude of cold extreme anomalies have
weakened [Alexander et al., 2006; Caesar et al., 2006]
although there can be considerable differences among
regions or temperature variables such as daily maximum and
minimum or extreme cold outbreaks [Easterling et al., 2000;
Walsh et al., 2001]. Both global and regional scale climate
models project changes in the occurrences of temperature
extremes under global warming [e.g., Meehl et al., 2007,
Kharin et al., 2007; Christensen et al., 2007; Diffenbaugh
et al., 2007].

[3] As a baseline for a model validation and to gain insight
into the natural variability processes responsible for extreme
temperature events, it is useful to examine properties of the
tails of the probability distributions in station observations of
air temperature. In doing so, there is reason to believe that
fine-scale processes will be important [Diffenbaugh et al.,
2005], suggesting a comparison on local to regional scales.
Furthermore, recent observational and theoretical results for
transport processes suggest the likelihood of distinct tail
properties. Non-Gaussian tails (most of which are approxi-
mately exponential) occur very commonly in probability
distributions of passive tropospheric chemical tracers and
water vapor [Neelin et al., 2010], and their existence is
consistent with simple mathematical prototypes for passive
tracer advection problems with a forcing that maintains a gra-
dient [e.g., Bourlioux and Majda, 2002; Pierrehumbert, 2000;
Ngan and Pierrehumbert, 2000; Majda and Gershgorin,
2010]. Such long-tailed distributions are hypothesized to
occur in near-surface air temperature data since a large
portion of near-surface air temperature variability is associ-
ated with advection of air masses across a large-scale tem-
perature gradient. Although air temperature is not a passive
tracer and potentially has complications due to effects of soil
moisture [Diffenbaugh et al., 2007] and clouds, there is still
ample reason to expect that probability density functions
(PDFs) of temperature might commonly inherit key proper-
ties seen in both the observed tracer distributions and the
prototypes. Specifically, the tails of the PDF can be longer
(often approximately exponential) than would be anticipated
from a fit to the core of the PDF (i.e., a central region con-
taining the bulk of the distribution, often approximately
Gaussian). We can further anticipate asymmetry in these
tails since asymmetry was noted in certain of the observed
tracers, and can be easily produced in the prototypes, for
instance, if the gradient on the high-tracer side of the region
of interest differs from the gradient on the low-tracer side or
if the advecting flow has an asymmetry between shorter
intense flow events in one direction versus longer, less
intense flow events in the other [Neelin et al., 2010]. Other
effects can also contribute to long tails in geophysical
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applications related to temperature, including multiplicative
noise processes such as a stochastic damping [Sura and
Sardeshmukh, 2008; Sura and Perron, 2010].

[4] The influence of tail behavior on the risk of extreme
events under global warming underlies the pragmatic
importance of quantifying tail characteristics. The commonly
stated qualitative explanation [e.g., Meehl et al., 2000, 2007;
Trenberth et al., 2007; Walker and Diffenbaugh, 2008] for
changes in extreme events under global warming is of a shift
in the mean causing an increase in the frequency of events
exceeding a certain threshold value, or conversely a decrease
in the occurrences of temperatures below a certain threshold
(such as freezing temperature or chill temperature relevant to
certain agricultural products). While this overall picture
remains, the presence of non-Gaussian tails implies that a
change in such distributions can potentially have more
complex behavior than that of a pure Gaussian, which can be
characterized simply by the mean and standard deviation. A
dependence on gradient and flow characteristics in the region
of interest is one possible complication suggested by the
simple prototypes, so locations in various climate regimes are
examined in Section 3. Once the existence of long-tailed
behavior is established, as is the aim here, the behavior of the
distribution under global warming becomes potentially more
complex; relatively simple changes, for instance in zonal
wind, potentially alter the properties of such tails [Majda and
Gershgorin, 2012]. Here we show that even in the simplest
case where climate change is assumed to shift the distribution
with increasing temperature, the form of the tails has a dra-
matic impact on the increase of the probability of exceeding a
given threshold temperature, as discussed in Section 4.

2. Data and Methods

[5] The data product used in this paper is the Global
Surface Summary of Day (GSOD) version 7, produced by
the National Climatic Data Center (NCDC), consisting of
18 daily surface meteorological variables. The input data are
derived from the synoptic/hourly observations contained in
U.S. Air Force DATSAV3 Surface data and Federal Climate
Complex Integrated Surface Data (ISD) [Lott et al., 2008].
Most stations discussed in this paper are from within the
United States owing to the relatively long length of the time
series, typically spanning from around 1950 through 2009.
Effort was made to only include stations with relatively few
missing values and no other major data quality issues.
Comparison of the GSOD data to the corresponding NCDC
Global Historical Climatology Network (GHCN) version 1
daily station data [Peterson and Vose, 1997] at several sta-
tions showed no significant differences.

[6] The three temperature variables of focus are the daily
maximum (7ray), daily average (74yg), and daily minimum
(Tnin), and the corresponding distributions are shown for each
station over JJA (June, July, August) or DJF (December,
January, February). To remove potential biases owing to
multi-decadal warming or cooling, the time series are linearly
detrended. The seasonal cycle is removed by subtracting the
daily climatology, calculated as the mean of each calendar day
over all years in the time domain (leap days were removed for
simplicity), which proved sufficiently smooth due to the long
time series considered here.

[7] The probability distributions are plotted as histograms
using a bin width of 5/9°C (except where noted otherwise) to
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prevent artifacts from the conversion from Fahrenheit to
Celsius. A Gaussian curve is shown on each distribution for
reference. One could define the curve with the standard
deviation o of the entire distribution, but this would be
affected by the presence of non-Gaussian tails. Therefore,
the Gaussian is fit to the core of the distribution by poly-
nomial regression, which we chose to be all points exceed-
ing a threshold of 0.3 of the distribution maximum. At this
threshold, the o of the core is typically only ~5-15% less
than the value of o for the entire distribution (with the
exception of stations with the most marked tails, e.g., LAX
Airport, Los Angeles, CA, Long Beach, CA, and San Juan,
Puerto Rico). Lower thresholds decrease this value by a few
percent but the fit becomes overly skewed by tails, while
higher thresholds rapidly increase the o difference and tends
to inflate the appearance of tails. A few instances were found
with departures from Gaussian so marked that even the cores
exhibit differences from a Gaussian fit.

[8] To assess statistical significance of the tails, an error
envelope is created by sampling artificial time series from a
Gaussian first-order autoregressive [AR(1)] process that
approximates the core. The AR(1) process is chosen to
match the standard deviation and 1-day autocorrelation time
for each station and season. The process fits the observed
autocorrelation at lags to at least several days to a week. For
each distribution, the error statistic is calculated by simu-
lating 1000 artificial time series the same length as the sta-
tion data and computing each of the 1000 histograms as was
done for the observations. A confidence interval is con-
structed using the S5th to 95th percentiles of the spread in
each bin. That is, the top of the confidence interval exceeds
95% of the values in each bin constructed from the artificial
series using the same time series length and binning
procedure.

3. Regional Consistencies and Differences
in Probability Distributions

[9] Figure la displays the probability distributions of daily
temperature anomalies (after subtracting the climatology and
detrending), with the Gaussian core fit and the AR(1) error
envelope superimposed, for each of the three variables
(Tmax> Tavgs Tmin) during JJA (summer) at the four stations
LAX Airport, Los Angeles, CA, Long Beach, CA, Phoenix,
AZ, and Houston, TX. Each of the stations exhibits marked
departures from Gaussian in at least two of the temperature
variables in one of the tails. As expected, asymmetry is
common. In each of these stations, one long tail is found,
while the other either does not depart strongly from Gaussian
or decreases more rapidly than the Gaussian fit to the core.
This is common among stations sampled.

[10] LAX and Long Beach are chosen primarily to dem-
onstrate the consistency among stations in similar climate
configurations (coastal/Mediterranean) in close proximity
(within 20 km), and both are seen to exhibit long positive
tails in Tt,ay and T,y over the summer season. It is apparent
that Tnax, Tave, and T, can substantially differ in tail
behavior—this varies among regions. In the LAX and Long
Beach cases, the positive tails in Tpn. and T,y could be
explained by the occasional advection of relatively hot air
masses from land, while the absence of strong tails in 7,
indicates that the minimum temperature may instead be
controlled by the sea breeze and ocean air temperatures.
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Figure 1. (a) Probability distributions (as normalized fre-
quency of occurrence) of daily temperature anomalies, nor-
malized by the standard deviation of a Gaussian fit to the
core (fit for points exceeding 30% of the maximum, drawn
as solid lines), at selected stations (vertically shifted for
clarity) during JJA (summer). Stacked for each station are
the variables Ty (red), Ty (black), and Tiyi, (blue). The
shaded error envelope (from sampling artificial autocorre-
lated Gaussian time series as described in Section 2) is
shown for T, at each station (the envelopes for Ty, and
Tmin are very similar). (b) As in Figure la but for during
DJF (winter), and the error envelope is shown for T,,;, at
each station.
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High-side long tails in Ti,, and T, are also present in the
DIJF season for these stations (not shown).

[11] The Phoenix and Houston stations, in subtropical arid
and subtropical humid climate regimes, respectively, share
similar distribution characteristics during JJA. Both are
located in areas close to a local maximum of climatological
temperature with little gradient, and thus might be antici-
pated to exhibit a diminished high-side tail because there is
no neighboring region from which to advect a substantially
warmer air mass. As discussed in detail in Section 4, the
Gaussian (or shorter) nature of the positive tails in these two
cities will have different implications under global warming
when compared to the roughly exponential tails found in the
Los Angeles stations. The Phoenix and Houston stations also
exhibit cold side tails in all three variables during summer.

[12] Figure 1b displays four stations—Grand Junction,
CO, Seattle, WA, Chicago, IL, and Prague, Czech
Republic—in the same format as Figure 1a, except for DJF.
With the exception of Seattle, these stations represent inte-
rior continental climate regimes, and all of which contain
distributions with interesting tail configurations during the
winter. Non-Gaussian low-side tails exist for at least two
temperature variables for these stations, and asymmetry is
seen in varying degrees due to the tendency for high-side
tails to depart less from the Gaussian. A substantial asym-
metry also exists in the cores of the Chicago and Prague
stations. The tendency towards a skewed non-Gaussian core
is also found in many other stations among all three vari-
ables, with the majority of such occurring in DJF and not
JJA. Also interesting are the relative contributions of Tijax
and T, to T, avg——ONC may expect the average temperature
to fall roughly between the maximum and minimum values
for a given day, as is evident in most JJA cases. However,
Toyg seems to mimic T, in the Grand Junction low-side
tail, whereas T, in Prague exhibits a longer tail relative to
the core than either T,;, or Ty Although we display
examples of non-Gaussian low-side tails during the winter
season in Figure 1b, there are also many stations that do not
exhibit such long tails. The regional differences in low-side
tail characteristics among stations implies that certain
regions are more susceptible to changes in extreme value
frequency under global warming, as mentioned for the JJA
cases. In these cases, a positive shift in the mean tempera-
ture implies a decrease in the occurrences of temperatures
below a certain threshold, and the tail characteristics of the
distribution will help determine the probability of such a
decrease. This may be of practical importance for agricul-
tural products that are sensitive to the freezing or chill
temperature.

4. Exceedance Thresholds

[13] The existence of long tails in temperature distribu-
tions—and the differing characteristics among stations—have
substantial implications for changes in frequency of extreme
temperature events over a particular location under gradual
shift in mean temperature, as in projected global warming.
Implications involving potential changes in tail properties
can be addressed in simple prototypes [Majda and
Gershgorin, 2012] or regional climate models [Diffenbaugh
et al., 2007]. A class of implications that can be addressed
directly from the observed distributions may be inferred for
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Figure 2. (a) Probability distribution function (shown as
frequency of occurrence) for anomalies of daily maximum
surface air temperature at San Juan, Puerto Rico (black dots).
The blue curve shows a Gaussian core fit to values above
30% of maximum; the red lines show exponential fits to
the low-side and high-side tails. The regions representing
exceedances of a threshold value Ty = 30 = 2.5° C, on the
high side, or 7y = —30 on the low side, are shown in green
and purple respectively (dark shading for the corresponding
region if the tails followed the Gaussian fit to the core).
Exceedance probabilities are integrated between Ty or T
and the furthest bin with nonzero values in the respective
tails (note shaded regions are not area proportional on this
log plot). (b) Ratio of the probability of low-side exceedance
of Ty as a function of the shift AT of the distribution to prob-
ability in the un-shifted case, comparing this ratio for the
observed tail (black), for an exponential fit to the tail (red)
and for a continuation of the Gaussian corresponding to
the core (using the same integration interval as for the
observations). (¢ and d) As in Figure 2b, but for the high-
side case.

the simplest case where the mean of the distribution is
assumed to shift. For advection-dominated tails, this corre-
sponds to assuming that flow statistics and temperature gra-
dient remain constant while the large-scale background
temperature increases. If tail characteristics are consequential
in this simple case, they appear likely to be at least as
important in more complex cases. This simple case can be
discussed quantitatively by calculating the increase of the
probability of exceeding a given high-side threshold tem-
perature Ty or the decrease in low-side exceedances (i.e.,
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falling below low-side threshold 71) under a positive shift
AT of the mean of the distribution. Another approach
[Kharin and Zwiers, 2005] fits distributions of extreme
occurrences in a given interval that apply asymptotically in
the limit of large samples. Here we focus on assessing the
potential significance of the tail properties in observed dis-
tributions, and of hence the importance of physically inter-
preting regional disparities. Evidence for the usefulness of a
simple shift in describing observed changes is discussed, e.g.,
by Simolo et al. [2010].

[14] Figure 2 illustrates the implications of tail properties
for a shift of the observed temperature anomaly distribution
for San Juan, Puerto Rico, which was chosen because it has
long tails on both low and high sides permitting both cases
to be illustrated for a single station; it also has a clearly
defined core and the tails are approximately exponential.
Shaded in green in Figure 2a under the positive tail is the
region of integration from the threshold temperature 7y up to
the maximum nonzero bin of the distribution, representing
the climatological probability of exceedance of this thresh-
old. Here the value of Ty is chosen to be 3 standard devia-
tions (~2.5°C for San Juan) above the mean (denoted as
Ty = 30 hereafter). The simplest case of a positive tem-
perature increase is illustrated by shifting the observed
distribution by AT = 1°C (~0.8¢ for San Juan), with the
increased probability of exceedance of Ty indicated by the
green region in Figure 2b. The negative tail is integrated
from the minimum nonzero bin to 71 = —30 and then
shifted by AT = 1°C to obtain a measure of the decrease
in frequency of exceedances in this warming scenario.

[15] The magnitude of a potential increase in frequency of
extreme temperature events occurring over a particular
location in the future will depend on the tail characteristics
of the distribution—and will differ strongly from Gaussian
tails to long (e.g., approximately exponential) tails. We can
quantify this difference between tail types by calculating the
ratio of the probability of exceedance of Ty or Tp as a
function of the shift AT for a given long-tailed distribution
and then comparing it to the hypothetical exceedance ratio of
the Gaussian fit over the same interval. Figure 2¢ displays
exceedance ratio curves for the positive tail in San Juan for
the case of the actual tail (black curve), the approximated
exponential tail (red curve), and for the Gaussian fit (blue
curve; note that the Gaussian fit characterizing the core is
continued through the end of the observable part of the tail
region when integrating). Under 1°C warming shift, this
ratio for 7T = 30 would increase by about a factor of 30 for
the Gaussian fit. However, for the actual positive tail seen in
this distribution, seen closely matching the exponential fit,
the probability of exceedance increases by less than a quarter
of this amount for a 1°C warming and much less rapidly for
larger warming. Indeed, extending to a 1.5°C warming
would place the Gaussian fit at a factor of about 100 while
the actual tail at only 10.

[16] Conversely, Figure 2b shows the ratio curves associ-
ated with the low-side tail integrations decreasing with
increasing AT, representing the diminishing probability of
exceeding the threshold temperature under the warming. The
Gaussian ratio curve (blue curve) is seen to be diminishing
much more rapidly than the actual curve (black) and the
exponential fit (red curve): after a 1°C warming, there
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remains a 30% exceedance probability in the actual expo-
nential tail case, but only a 0.85% probability under the
Gaussian fit.

5. Discussion and Conclusions

[17] Analysis of observational surface temperature proba-
bility distributions here finds non-Gaussian tails to be com-
mon in station measurements over a range of locations and
climate zones. To provide a rough summary statistic for the
29 stations and the three temperature variables (7pax, Timins
and daily average) examined here, approximately half these
distributions exhibit substantial departure from Gaussian in
the tails on at least one side (for details see Table S1 and
Figure S1 in Text S1 of the auxiliary material)." This frac-
tion was similar in summer and winter. Three quarters of the
stations had at least one variable qualifying as non-Gaussian
in each of JJA and DJF. Only 7% of the stations had tails
that were consistent with Gaussian within the sampling error
bars for all three temperature variables in both seasons.

[18] Asymmetric distributions are very common among
those that depart significantly from Gaussian, with the vast
majority having a long tail only on one side (high side or low
side depending on location). Similar asymmetry in observed
tracers and possible causes have been discussed by Neelin
et al. [2010]. Overall, these tails appear qualitatively con-
sistent with tracer advection prototypes, but the differences
in behavior between minimum, maximum and daily aver-
aged temperature and the differences in distribution among
different regions suggest the step from qualitative under-
standing to quantitative simulation may be significant. For
most locations, clear departures from Gaussian were con-
fined to the tails, with the core adequately fit by a Gaussian
(to within error bars from a Monte Carlo sampling of a
synthetic time series). For a few locations, more severe non-
Gaussianity was encountered with departures occurring
even within the core (as may be seen for Chicago Ty, in
Figure 1b). In a number of cases with strong asymmetry, fits
to the core show shorter-than Gaussian tails occurring on
one side (as may be seen for some variables in Figure 1, e.g.,
for Long Beach, Seattle, Chicago; see also auxiliary
material). These are not highlighted here because we do
not have as clear a prototype from tracer-advection problems
for this behavior at this time. However, this behavior and the
physical mechanism for it is important to substantiate in
future work. Shorter-than-Gaussian tails would have the
converse consequences for change of threshold exceedances
under global warming than the long-tailed case discussed
below, in some cases enhancing risk of strong changes in
threshold exceedances.

[19] The tail characteristics of regional distributions have a
number of potential consequences for threshold exceedances
under global warming. While only the simplest case is
examined here—that of a large-scale temperature increase
causing a shift in mean of the observed distribution—the
consequences of tail characteristics are substantial. Loca-
tions with high-side tails that are roughly Gaussian, such as
Phoenix and Houston, have a much higher increase of
exceedances of a high threshold value for a given warming
shift than do those with prominent high-side exponential

'Auxiliary materials are available in the HTML. doi:10.1029/
2011GL050610.
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tails, such as coastal Los Angeles. In other words, under a
given warming a Gaussian-tailed region tends to be at
greater risk of heat wave events that have seldom been
encountered than a comparable long-tailed region. In the
latter, an increase in heat waves exceeding a given threshold
does occur but the region is more likely to have experienced
such extremes in the past and thus to have infrastructure
which is adapted to such occurrences.

[20] The sensitive dependence of tail characteristics on
regional effects noted here suggests that it will be (i) useful
to understand the physical mechanisms that produce them
(including the observed asymmetry, and the sources of
regional dependence); and (ii) essential to verify whether
high-resolution models accurately reproduce observed tail
characteristics for any region for which an assessment of
extreme events is being conducted. A model that has an error
in the nature of the tail, e.g., erroneously produces a
Gaussian rather than a long tail under current climate for a
particular region, will likely have serious errors in quantita-
tively predicting the increase in exceedances under future
climate.
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