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Abstract
Climate change can affect both crop yield and the land area suitable for agriculture. This study
provides a spatially explicit estimate of the impact of climate change on worldwide agricultural
land availability, considering uncertainty in climate change projections and ambiguity with
regard to land classification. Uncertainty in general circulation model (GCM) projections is
addressed using data assembled from thirteen GCMs and two representative emission scenarios
(A1B and B1 employ CO2-equivalent greenhouse gas concentrations of 850 and 600 ppmv,
respectively; B1 represents a greener economy). Erroneous data and the uncertain nature of
land classifications based on multiple indices (i.e. soil properties, land slope, temperature, and
humidity) are handled with fuzzy logic modeling. It is found that the total global arable land
area is likely to decrease by 0.8–1.7% under scenario A1B and increase by 2.0–4.4% under
scenario B1. Regions characterized by relatively high latitudes such as Russia, China and the
US may expect an increase of total arable land by 37–67%, 22–36% and 4–17%, respectively,
while tropical and sub-tropical regions may suffer different levels of lost arable land. For
example, South America may lose 1–21% of its arable land area, Africa 1–18%, Europe
11–17%, and India 2–4%. When considering, in addition, land used for human settlements and
natural conservation, the net potential arable land may decrease even further worldwide by the
end of the 21st century under both scenarios due to population growth. Regionally, it is likely
that both climate change and population growth will cause reductions in arable land in Africa,
South America, India and Europe. However, in Russia, China and the US, significant arable
land increases may still be possible. Although the magnitudes of the projected changes vary by
scenario, the increasing or decreasing trends in arable land area are regionally consistent.

Keywords: climate change, agricultural land, global assessment

S Online supplementary data available from stacks.iop.org/ERL/6/014014/mmedia

1. Introduction

Climate change, resulting from the effects of increased
greenhouse gas emissions, poses greater threats than in
previous decades by combining higher temperatures, less
available water in regions where it is most needed, and more
frequent and intense extreme weather events (WFP, FAO, IFRC
and OXFAM 2009). In the context of an increasing population,

1 Author to whom any correspondence should be addressed.

these effects can become more dramatic. In particular, climate
change has raised much concern regarding its impacts on future
global agricultural production, varying by region, time, and
socio-economic development path (Lobell and Field 2007,
Schmidhuber and Tubiello 2007, Schlenker and Lobell 2010).
Given the importance of global agriculture, this study examines
the impact of climate change on global agricultural land
availability, which represents a significant concern for the
world’s agricultural future, and presents a spatially explicit
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view of the possible global impacts, while considering the
uncertainty involved in forecasting future climate change.

Several studies have already explored the global distribu-
tion of potential arable land, in terms of biophysical circum-
stances, under current and future climate conditions (Cramer
and Solomon 1993, Xiao 1997, FAO 2000, Ramankutty et al
2002). However, in those studies, neither the uncertainty
involved in climate change projections nor the ambiguity
inherent in land classification (Ahamed et al 2000) has been
explicitly addressed. Land availability assessments must deal
with the challenges involved in land classification according
to multiple criteria, and in particular, land assessment at
the global scale using international datasets must consider
the uncertainty involved in those datasets. Most recently,
Cai et al (2011) proposed a learning-based, fuzzy logic
modeling approach and applied this framework to estimates of
global agricultural land availability, represented by probability-
based land suitability values. The present study adopts this
approach for the land suitability assessment and estimates
global agricultural land availability under both current and
future conditions.

When considering the uncertainty involved in climate
change projections, a systematic approach is needed to treat
the various uncertainties associated with model variability and
emission scenarios. More than twenty general circulation
models (GCMs) have been developed to simulate and predict
possible climate changes. Although these models converge
acceptably at the global scale, their outcomes at the regional
scale vary considerably; some models even conflict with each
other (Laurent and Cai 2007). This regional uncertainty
arises from two main factors: (1) each model adopts different
climate sensitivities (i.e. the temperature change associated
with a doubling of the concentration of carbon dioxide in
Earth’s atmosphere), ranging from 2.1 (PCM) to 4.4 (UKMO-
HadGEM1) Celsius (IPCC 2007a, 2007b); and (2) variations
between models with respect to combinations of forcings and
the quantification methods of common forcings (Collins et al
2006, Forster and Taylor 2006, Cai et al 2009). Therefore,
climate predictions from a single GCM may be insufficient due
to limitations within the assumptions, regardless of the model’s
sophistication. Larger ensemble of GCMs, sampling the widest
range of possible outcomes, may provide a more reliable view
into the future (Murphy et al 2004, Laurent and Cai 2007,
Weigel et al 2010).

This letter will address several questions related to
possible changes in global agricultural land availability given
the uncertain projections of climate change.

(a) Do different regions and the world as a whole expect
significant changes in agricultural land availability?

(b) What will be the distribution of these possible changes
throughout the world?

(c) What is the likelihood of the changes by region?

These questions will be examined by a quantitative land
suitability assessment under the various scenarios of projected
climate change resulting from the ensemble of thirteen GCMs
and two emission scenarios. Regional climate change results
are used to derive the changes in land suitability caused

by the changes in soil temperature regimes (classified into
fourteen categories based on mean annual soil temperature)
and humidity. Results are presented for Africa, China, Europe,
India, Russia, South America, and the continental United
States, all of which are characterized by substantial agricultural
production capacities.

2. Data and methodology

2.1. Data processing

Global datasets for land suitability assessment are adopted
from Cai et al (2011) and provided in table S1 of the
supporting information (available at stacks.iop.org/ERL/6/
014014/mmedia) (SI, which includes tables S1–6 and figures
S1–5, as referred in the rest of this letter is available
at stacks.iop.org/ERL/6/014014/mmedia), which includes
present soil properties, temperature, humidity index (HI), land
slope, and land cover. Specifically, the soil property data used
in this work are part of the Harmonized World Soil Database
(HWSD) by FAO/IIASA (FAO/IIASA/ISRIC/ISSCAS/JRC
2009) (table S2 available at stacks.iop.org/ERL/6/014014/
mmedia). The HWSD contains sixteen soil properties for the
earth’s land surface, and each property is assigned a rating
between 0 and 1. The topographic data used are global terrain
slope (GTS) data from Fischer (2008). GTS data include eight
slope classes: 0–0.5%, 0.5–2%, 2–5%, 5–10%, 10–15%, 15–
30%, 30–45%, and >45%. The slope files contain eight maps,
in which the color-coded value of each pixel represents the
percentage, by area, belonging to a particular slope class. The
land-use data are obtained from the remotely sensed land-cover
database from the International Geosphere–Biosphere Program
(IGBP) (Biradar et al 2009), which serves as a reference for
comparison with the simulated results. Each dataset possesses
a 30 arcsec resolution.

HI is a numerical indicator of the degree of aridity at
a given location and is used in this study as a measure of
humidity. A detailed calculation procedure is provided in the
SI (available at stacks.iop.org/ERL/6/014014/mmedia). Global
HI maps are generated for the historical period and the various
projected future scenarios. The generated historical HI map
(figure S1 available at stacks.iop.org/ERL/6/014014/mmedia)
illustrates similar global patterns to the 1950–2000 global
mean HI map generated by Trabucco and Zomer (2009).

It is difficult to simulate the changes in soil temperature
regime, which is defined by a number of classes (table
S1 available at stacks.iop.org/ERL/6/014014/mmedia) in land
classification (Cai et al 2011). Since a strong correlation
between historical air temperature and soil temperature
regimes as defined by USDA-NRCS (USDA-NRCS 1997) is
found (see figure S2 available at stacks.iop.org/ERL/6/014014/
mmedia), the former is used as a substitute for the latter. Air
temperature is divided into three separate ranges: <265 K,
265–280 K, and >280 K, corresponding to the three soil
temperature regime classes 3–4, 5–8, and 9–16 (see table S1
for the description, available at stacks.iop.org/ERL/6/014014/
mmedia).

Climatic data used in this work contain two periods:
(i) historical climatic data, which consist of observed
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and simulated thirty-year average monthly land surface
temperature and precipitation readings from 1961–1990;
and (ii) projected climatic data, consisting of thirty-year
average monthly temperature and precipitation forecasts for
2070–2099. Observational historical data are obtained
from the Climatic Research Unit (CRU) database at the
University of East Anglia (New 1999) and the simulated
data are the outputs of thirteen GCMs (CGCM3.1, GFDL-
CM2.0, GFDL-CM2.1, GISS-AOM, FGOALS-g1.0, INM-
CM3.0, IPSL-CM4, MIROC3.2(hires), MIROC3.2(medres),
ECHAM5/MPI-OM, MRI-CGCM2.3.2, CCSM3, UKMO-
HadCM3) (IPCC 2007a, 2007b). Since the resolutions of
the GCM-simulated outputs vary significantly (from 1.125◦ by
1.125◦ to 4◦ by 5◦), all the GCM outputs are re-sampled to 2◦
by 2◦ for computational convenience. The observed climate
data are also aggregated to the same resolution.

2.2. Uncertainty treatment in regional climate change
projections

The regional variability of GCM simulations and the diversity
of emission scenarios are considered as the two major sources
of uncertainty in climate change projections at the regional
scale. Two widely used ensemble approaches are employed to
deal with GCM regional variability, the simple average method
(SAM) and root mean square error minimization method
(RMSEMM). SAM assumes that there is no information
available to support the model’s preference and assigns an
equal weight to each model (Laurent and Cai 2007). This
approach ignores the variations in quality between models
(Murphy et al 2004). RMSEMM determines the weights or
skill scores of GCMs according to their relative abilities to
reproduce the actual historical records. However, observational
datasets usually involve error and uncertainty themselves.
Moreover, a model’s capacity to reproduce known data is not
necessarily representative of its predictive accuracy. These
two approaches represent the two extreme cases of information
use (Laurent and Cai 2007). These two cases, one rejecting
the use of the information from a retrospective analysis and
the other fully adopting it, provide very wide, if not the
widest, range of the differences among all the combinations
of the GCMs used in the study. Given the uncertainty
involved in GCM predictions, these two ensemble approaches
provide a plausible range of possible future changes. It
should be noted that the method adopted in this study uses
the ensemble average of the projected climate from a number
of GCMs (Murphy et al 2004, Weigel et al 2010). An
optional method is based on scenario screening, i.e., applying
individual GCM projections to the land assessment model,
which results in a number of land evaluation results (scenarios),
and comparing the scenarios to obtain a range of results and
a direction or kind of consistency of results. This method
may provide useful information regarding the result robustness
for individual regions. However, the assumption beyond this
scenario screening method is that any single GCM performs
properly, and is not inferior to the ensemble of the GCMs.
This does not follow the assumption that the ensemble of the
GCMs provides better climate prediction than any single GCM

(Murphy et al 2004, Weigel et al 2010). The debate on the
methods is beyond the purpose of this letter. In addition, it is
difficult to conduct the scenario screening with a large number
of GCMs with land cells of approximately 1 km by 1 km in the
global context. Thus the optional method is recommended for
a regional study only.

Utilizing SAM, twelve monthly precipitation and tem-
perature files are produced by taking the average of the
projected monthly values from thirteen GCMs. In contrast to
skill-score-based methods (i.e., applying different weights to
individual GCM outputs to calculate weighted average output),
RMSEMM is a probability-based method, which targets the
optimal performance of the ensemble average of GCM outputs
(Laurent and Cai 2007). Probabilities are assigned to each
GCM so as to minimize the root mean square error between
the 30-year average of the observed historical data and the
weighted simulations as shown in following equation.

Min W =
12∑

t=1

(
13∑

i=1

pi Gi,t − Ot

)2

; for t = 1, 2, . . . , 12,

i = 1, 2, . . . , 13.

In this case, Ot signifies the monthly observational record, Gi,t

denotes the monthly simulation of one GCM, pi represents
the probability assigned to a single GCM, and W becomes the
annual root mean square error between the weighted simulation
and the observation. The probability (pi ) is calculated
separately for historical precipitation and temperature (1961–
1990) for each grid. Details of this method are provided in Cai
et al (2011).

In terms of emissions, two scenarios, A1B and B1 are
employed to represent a range of emission levels. A1B
assumes a future world containing rapid economic growth,
low population growth rates, and rapid introduction of more
efficient technology. Alternatively, B1 assumes a convergent
world with the same global population as in the A1B storyline,
but with rapid changes in economic structures, leading toward
a more ‘green’ economy (IPCC 2007a, 2007b). More
specifically, A1B projects greater rates of GHG emissions
than B1, assuming CO2-equivalent GHG concentrations of 850
ppmv, compared to 600 ppmv under B1. Thus, A1B is likely
to cause temperatures to increase by larger margins by the end
of this century. These two scenarios are also chosen because a
large sample of GCMs, thirteen in this case, can be assembled
under both sets of conditions. Combining the two GCM
regional variability treatment methods with the two emission
scenarios, four future scenarios are defined and analyzed in
this paper: A1B-SAM, A1B-RMSEMM, B1-SAM, and B1-
RMSEMM.

2.3. Land classification under future climate conditions

This section follows the methodology developed by Cai et al
(2011). Land is divided into three categories according to its
suitability for agriculture: suitable, marginally suitable, and
not suitable. Suitability is characterized by four factors: soil
properties, land slope, soil temperature regime, and humidity.
FAO proposed two broad land classes, ‘suitable’ and ‘not
suitable’ based on climatic, terrain and soil property data
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(Ahamed et al 2000). In this letter, the ‘suitable’ class defined
by FAO is further divided into ‘suitable’ and ‘marginally
suitable’ classes. Suitable agricultural lands are defined as
those locations containing only minor or moderately severe
limitations with respect to sustained use. In general, these
lands should not contain more than one severe limiting factor
among the four factors employed for this assessment (Ahamed
et al 2000). In reality, these lands will most likely be those
currently used as croplands. Marginally suitable lands are
those with limitations that are severe in terms of sustained
use, but yet marginally economical to cultivate in short term
(FAO et al 1997). It is assumed that these locations may
contain one severe and one moderate limitation or even two
moderate limitations, but no more. Marginally suitable lands
are most likely to be those currently in use as pasture land,
mixed vegetation and cropland, or left fallow. It is also possible
that these lands are used primarily as cropland, as may be
necessary in certain developing countries. Furthermore, the
marginally suitable lands have the potential to be utilized for
biofuel crops, such as miscanthus and switchgrass (Tilman et al
2009, Cai et al 2011). Not suitable lands refer to those sites
characterized by more than one severe limitation. In this study,
potential arable land is estimated as the sum of suitable lands
and marginally suitable lands.

Fuzzy logic modeling is adopted to estimate agricultural
land suitability, as it is capable of handling classification
uncertainty and ambiguity (Singpurwalla and Booker 2004). It
consists of three steps: fuzzification, fuzzy rule inference, and
defuzzification (Joss et al 2008).

Fuzzification assigns membership functions to each factor
for each of the three linguistic variables (suitable, marginally
suitable, and not suitable). Next, fuzzy rules are combined
and mixed to model the productivity of each land pixel
(figure S3 available at stacks.iop.org/ERL/6/014014/mmedia).
As an example, the rules for the continental United States
are provided in table S3 (available at stacks.iop.org/ERL/
6/014014/mmedia). These rules are based upon empirical
knowledge and improved through a learning process (table S4
available at stacks.iop.org/ERL/6/014014/mmedia). Finally,
defuzzification translates the fuzzy linguistic outputs into
an aggregated single value (Oberthur et al 2000) (figure
S5 available at stacks.iop.org/ERL/6/014014/mmedia). The
framework of the integrated land assessment procedures is
provided in figure S4 (available at stacks.iop.org/ERL/6/
014014/mmedia). One important assumption is that the fuzzy
rules which simulate the current arable land will also be able
to project the cultivable land in the future. A more detailed
description of the approach can be found in the SI (available at
stacks.iop.org/ERL/6/014014/mmedia).

Land classification under current climate conditions
follows the results from Cai et al (2011), which is used as the
baseline for the assessment under future climate conditions.
The global map of simulated potential arable land under
the baseline scenario is displayed in figure S6 (available
at stacks.iop.org/ERL/6/014014/mmedia). The baseline land
estimates from this study are compared to other studies in
tables S5 and S6 in the SI (available at stacks.iop.org/ERL/6/
014014/mmedia). Two of the four factors of land suitability,

the HI and soil temperature regimes, are re-assessed using
projected changes in precipitation and temperature under the
four scenarios defined previously.

3. Results

Global maps of gross potential arable land changes are
generated for the four different scenarios: A1B-SAM,
A1B-RMSEMM, B1-SAM, and B1-RMSEMM, respectively.
Globally, the area of potential arable land ranges from 48.9
(A1B-RMSEMM) to 51.9 (B1-SAM) million km2, indicating
a range of changes [−0.8, 2.2] million km2 from the baseline
estimate of 49.7 million km2. The arable land total decreases
under A1B emission scenarios, but increases under B1. The
SAM ensemble approach results in more desirable global
outcomes than the RMSEMM, that is, smaller decreases
in arable land and larger increases thereof in the analyzed
regions. Figures 1(a) and (b) illustrate the distribution of the
effects predicted under A1B-RMSEMM and B1-SAM, which
represent the largest global arable land decrease and increase,
respectively. As can be observed from the two images,
arable land is likely to increase at the higher latitudes of the
northern and southern hemisphere, including Canada, Russia,
northern China, southern Argentina, and the northern US.
In comparison, shrinking arability will likely occur at lower
latitude locations, such as western Africa, Central America,
western Asia, the south-central US, as well as northern and
central South America. As shown in table 1, Africa, Europe,
India, and South America may expect varying levels of
reduction, −1 to −18%, −11 to −17%, −2 to −4%, and −1
to −21% respectively, while Russia, China, and the US may
benefit from climate change with increases in arable land of 37
to 67%, 22 to 36% and 4 to 17%, respectively.

The climatic causes of the projected land suitability
changes are examined with respect to air temperature and
humidity. Figures 2(a) and (b), along with figures 3(a) and (b)
display the changes in temperature and HI under the A1B-
RMSEMM and B1-SAM forecasts, respectively. Overall, the
increases in temperature are milder, and the changes in HI are
mostly more favorable to agriculture under B1 as compared
with A1B. Regionally, warmer and wetter climate predictions
contribute to the increase in cultivable land observed in Russia,
northwest China and the northern US. Conversely, a reduction
in HI represents the main driver of decreases in cultivable
land seen in tropical and sub-tropical areas, affecting crop
water availability. Minor decreases in HI are likely to occur
in western Asia, southern Europe, Australia, India, the south-
central US, and western Africa, while the northern regions
of South America may experience slightly more precipitous
declines in HI.

When considering suitable land and marginally suitable
land separately, both display consistent trends (in terms of
gained or lost arable land area) in most regions, with the
exception of India. In this case, the suitable potential
arable land decreases, while marginally suitable land actually
increases in India, indicating an exchange of land between the
two categories. By contrast, Russia has some areas which
are projected to be converted from marginally suitable to
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Figure 1. Changes of potential arable land under A1B-RMSEMM (a) and B1-SAM (b). (1) The blank on longitude zero is caused by merging
the results from different GCMs with different spatial resolutions, (from 1.125◦ by 1.125◦ to 4◦ by 5◦, latitude by longitude); it is also caused
by overlaying the GCM results with other spatial datasets (soil, slope and land cover)—the two have different geo-reference systems. During
the data converting and aggregation (over different GCM resolutions), some data at the boundary (i.e., longitude zero) are lost. (2) Due to
incomplete data in Greenland and Antarctica and the land north of 60 N, these regions are not shown in the map. This notation also applies to
figures 2 and 3.

Figure 2. Changes of annual mean temperature under A1B-RMSEMM (a) and B1-SAM (b).

Table 1. Gross potential arable land areas and change percentages under historic and projected scenarios.

Africa China India Europe Russia South America US Global

Mkm2 (%) Mkm2 (%) Mkm2 (%) Mkm2 (%) Mkm2 (%) Mkm2 (%) Mkm2 (%) Mkm2 (%)

Baseline 12.11 4.58 2.72 3.57 2.32 9.84 4.37 49.74
A1b-SAM 11.26 −7 6.22 36 2.62 −4 2.97 −17 3.53 52 7.86 −21 4.78 9 49.35 −1
A1b-RMSEMM 9.92 −18 5.71 25 2.64 −3 2.95 −17 3.87 67 8.98 −9 4.53 4 48.92 −2
B1-SAM 12.05 −1 6.03 31 2.67 −2 3.18 −11 3.17 37 9.38 −5 5.11 17 51.91 4
B1-RMSEMM 10.77 −11 5.62 22 2.67 −2 3.17 −11 3.48 50 9.70 −1 4.90 12 50.75 2

suitable land; in northwestern China, some location forecasts
even transform from not suitable to suitable land. The
forecasted changes in India and Europe depend on the emission
scenarios only, while the ranges of conditions projected in
the other regions are affected by both the socio-economic
development paths (which are associated with the various
emission scenarios) and the ensemble approaches. Although
the magnitudes of land change vary considerably by scenario,
the ordinal directions of change are generally consistent over
all scenarios. This indicates that one ought to feel reasonably
confident regarding the validity of the obtained arable land
availability trends. On the other hand, the ranges of possible

changes do reflect the regional uncertainty associated with the
various GCMs as well as their sensitivities to GHG emissions.

In previous studies, the total global potential arable land
was estimated, using historical data, as between 32.91 and
41.53 million km2 (Cramer and Solomon 1993, Xiao 1997,
FAO 2000, Ramankutty et al 2002). However, Cramer
and Solomon (1993) and Ramankutty et al (2002) did not
consider the topography constraint in their estimate, while
Xiao (1997) and FAO (2000) adopted 1931–1960 climatic
data (Leemans and Cramer 1991), which are colder than the
equivalent measurements from 1961–1990 globally (Hadley
CRUT 2009). Moreover, the soil property factor adopted
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Figure 3. Changes of humidity index under A1B-RMSEMM (a) and B1-SAM (b).

in previous studies (e.g., Cramer and Solomon 1993, Xiao
1997, FAO 2000, Ramankutty et al 2002) either has coarser
resolution and/or does not include as many properties as
this study (table S2 available at stacks.iop.org/ERL/6/014014/
mmedia).

When compared with the study by Ramankutty et al
(2002), for the projected changes in total potential arable
land, the regional alteration trends appear consistent while the
magnitudes of these shifts do not. Global potential arable
land is projected to be reduced by 0.5–0.8 million km2 under
A1B scenarios and increased by 1.0–2.0 million km2 under the
B1 scenarios which represent a greener economy than A1B.
To compare, Ramankutty et al (2002) predicted an increase
of 6.6 million km2 globally. In general, both this study and
another by Collins et al (2006) project a reduction in land
suitability in tropical regions, such as Africa, South America
and Oceania (Ramankutty et al 2002) and an increase in
regions at the higher latitudes of the northern hemisphere, to
varying degrees. Arable land in Russia is predicted to grow
by about 1.1 million km2 in this study; Ramankutty et al
(2002) estimated an additional 3.4 million km2 for former
Soviet Union. For China, this work projects an increase of
around 1.2 million km2 while Ramankutty et al (2002) project
0.9 million km2 for China, Mongolia and North Korea. In
fact, some studies have found that the Inner Mongolia region
in China is experiencing rising temperatures and precipitation
rates and consequently, should expect grassland expansion as
well as improvements in overall yields (e.g., Sheng 2007, You
et al 2002). The differences may result from the three main
reasons besides the different estimating factors employed.
First, the various CO2-equivalent GHG concentration levels are
assumed. Ramankutty et al (2002) employed the IPCC TAR
scenario with a CO2-equivalent GHG concentrations of 710
ppmv, while this study uses IPCC SRES A1B and B1 scenarios
with CO2-equivalent GHG concentrations of 850 and 600
ppmv, respectively. Second, Ramankutty et al (2002) used the
anomalies compared to the CRU climatology (i.e., adding the
anomalies between the GCM simulations of 2070–2099 and
1961–1990 to the observed 1961–1990 climate data from CRU
to eliminate the bias in GCM 2070–2099 simulations, New
1999), while this research adopts GCM projections directly.
Third, as discussed above, our study adopts a method based

on the ensemble average climate by two methods (SAM and
RMSEMM) and Ramankutty et al (2002) basically used the
scenario screening method, which applies individual GCM
outputs to the land evaluation procedures.

4. Impact of human settlement development

More realistic estimates of land use require adjustments
that allow for human settlement in terms of industrial and
residential use, as well as for protected land conservation (FAO
2000). A ‘protected land’ is defined as ‘an area of land and/or
sea especially dedicated to the protection and maintenance
of biological diversity, and of natural and associated cultural
resources, and managed through legal or other effective means’
(IUCN 1994). This designation includes important forests,
woodlands, savannas, grasslands, mountains, lake systems and
deserts (Chape et al 2003). The breadth of these areas has
increased continually, beginning during the middle of the 20th
century (Green and Paine 1997). In this study, protected land
data from 1994 provided by Green and Paine are adopted for
the baseline scenario of climate change assessment. These data
are selected due to the temporal proximity of 1994 to the period
(1961–1990). It is assumed that the quantity of protected land
area in 2003 (Chape et al 2003), the most recent year available
within the data, would remain constant in the future.

The area required for human settlement is assumed to be
related to population size (Alexandratos 1995). In the reference
scenario, under current climate conditions, the settlement
area is calculated using the conversion of 0.033 ha/person
multiplied by the population size. In the projected scenarios,
the ratio is slightly less, at 0.03 ha/person, accounting for
the assumed higher population density (FAO 2000). The
population data used in the reference scenario is from 1992, a
year presumed to be similar to the period (1961–1990) used for
baseline climate change assessment in this study. The future
scenarios employ population data projected for 2050. The
selection reflects the fact that the projected world population
reaches its peak around 2050 under both A1B and B1 (Furuya
et al 2009). Furthermore, it was assumed that 50% of the
protected areas and 100% of the settlement lands occupy
potential arable land (FAO 2000). Based on the specifications
stated above, net potential arable land areas are calculated both
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Table 2. Net potential arable land areas and change percentages under historic and projected scenarios

Africa China India Europe Russia South America US Global

Mkm2 (%) Mkm2 (%) Mkm2 (%) Mkm2 (%) Mkm2 (%) Mkm2 (%) Mkm2 (%) Mkm2 (%)

Baseline 10.33 3.79 2.33 3.11 1.96 8.82 3.24 41.32
A1b-SAM 8.47 −18 5.28 39 2.00 −14 2.45 −21 2.71 38 5.65 −36 3.46 7 38.05 −8
A1b-RMSEMM 7.14 −31 4.77 26 2.02 −13 2.43 −22 3.05 56 6.76 −23 3.20 −1 37.62 −9
B1-SAM 9.26 −10 5.09 34 2.05 −12 2.65 −15 2.35 20 7.16 −19 3.78 17 40.62 −2
B1-RMSEMM 7.99 −23 4.68 24 2.05 −12 2.65 −15 2.66 36 7.48 −15 3.57 10 39.46 −5

worldwide and for seven distinct regions by subtracting the
area reserved for protected land and human settlement from the
gross arable land present in table 1, and the results are provided
in table 2.

The estimated net potential arable land under the baseline
scenario is comparable to the current global agricultural area,
including cropland and pasture land. According to FAOSTAT
(FAOSTAT 2010), the global agricultural area in 1975 is 46.3
million km2, which exceeds our estimate of 41.3 million km2.
When analyzed by region, the FAO datasets show smaller
values for some regions, especially South America. A possible
explanation is that a significant fraction of the potential arable
land in South America is still undeveloped and covered by
forest.

Net arable land around the end of the 21st century under
the four scenarios is projected to decline by 2–9% globally.
Regionally, Africa, India, Europe and South America are likely
to experience different levels of decreased available arable
land. By contrast, China, Russia and the US may still benefit
from climate change in spite of population growth and land
conservation.

5. Discussion and conclusions

Countries at the higher latitudes of the northern hemisphere
are more likely to benefit from climate change as a result of
increasing quantities of arable land, while countries at medium
and low latitudes may suffer from different levels of potential
arable land loss. Increases in total potential arable land are
likely to occur in regions at the northern hemisphere’s higher
latitudes, such as Russia, northern China and the US by 37–
67%, 22–36%, and 4–17%, respectively. The growth of
potential arable land in those regions is mainly attributed to
the increased temperature and/or improved humidity, factors
which currently constrain land suitability. In Africa and South
America, which possess the largest proportions of potential
arable land, accounting for more than 40% of the global total,
lost arable land can be expected due to climate change by 0.5–
18% and 1–21%, respectively. Reductions are also expected
in Europe by 11–17% and India by 1.7–3.6%. Globally, the
A1B scenarios project a reduction of 0.5–0.8 million km2

and B1 scenarios project an increase of 1.0–1.2 million km2.
The projected global changes in arable land vary by scenario,
which is related to the development paths and GCM ensemble
approaches. However, the increasing or decreasing trends in
total arable land throughout the different regions is consistent

across all scenarios, allowing for reasonable confidence in the
estimates.

The net potential arable land, assessed by subtracting
human settlements and protected land from the global total, is
estimated as 41.3 million km2 under the baseline scenario, and
is likely to decrease by 0.7–3.7 million km2 in the projected
scenarios. The greatest potential for agricultural expansion
lies in Africa and South America, with current cultivated land
accounting for less than 20% of the net potential arable land
(FAO 2000, Ramankutty et al 2002). However, it is likely
that both climate change and population growth will cause a
reduction in the potential arable land in Africa, South America,
India and Europe. Conversely, in Russia, China and the US,
although population growth poses a threat to the quantity
of arable land, significant increases in net arable land are
estimated at 20–56%, 24–39%, and 0–17%, respectively. The
increased magnitudes of net arable land in China under the four
scenarios are even slightly larger than those of gross arable
land. This is probably a result of both climate change impact
and slow population growth of China in the future.

This work may overlook possible damages to land quality
from extreme events such as heat waves and floods. In some
regions, the increasing precipitation rates projected may lead
to the expansion of floodplain, and as a result, the reduction
of existing croplands; rising sea levels have already caused
land losses in certain countries. Moreover, the influences of
intra-year climate variability also affect agricultural land use.
On the other hand, there are opportunities to increase the
value of arable land through adaptive management practices.
Some marginally suitable land where water is a constraint may
be currently irrigated. It should be noted that more explicit
assessment of the impact and limitation and irrigation may
result in different arable land, given that irrigation actually
supports a large fraction of the world’s cropland (Rosegrant
et al 2002). Other agricultural adaptation measures such as
rainfall harvesting and water storage may mitigate the negative
impacts of climate change on land suitability and thus maintain
current levels of available arable land. These issues suggest
a need for more detailed examination at the regional or local
scale, but are beyond the scope of this letter.

Although the global scale simulation limits the accuracy
of the results required for regional analysis, this letter presents
the main patterns and trends of the distribution of potential
rain-fed arable land and the possible impacts of climate change
from a biophysical perspective, given the data available for
our study. The possible gains and losses of arable land in
various regions worldwide may generate tremendous impacts
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in the upcoming decades upon regional and global agricultural
commodity production, demand and trade, as well as on the
planning and development of agricultural and engineering
infrastructures.
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